

DETECTION PRINCIPLES

- WIMP scatters elastically from nucleus and we detect the nuclear recoil
- Recoil can be detected by
 - scintillation—recoiling nucleus excites molecules in the detector which then emit photons when they de-excite
 - ionisation—recoiling nucleus ionises atoms in the detector
 - heat/phonons—recoiling nucleus excites crystal lattice
- Many detectors are sensitive to more than one of these
 - · this can help eliminate backgrounds
- Note that both σ_0 and M_W are unknowns
 - result of measurement is a contour in a plane, not a welldefined point

3

BACKGROUNDS

- What can mimic a WIMP signal?
 - anything else that causes a recoil and/or injects a charged particle into your detector
 - o cosmic rays
 - ambient radioactivity, either in the environment or in your detector itself
 - anything that causes a signal that looks like a recoil
 - o electronic noise, in detectors or in subsequent electronics
- Most backgrounds are likely to be much larger than WIMP signal unless we do something about them
 - cosmic rays and radioactive decay products are not weakly interacting!

TECHNIQUES FOR MITIGATING BACKGROUNDS

- Eliminate the source entirely
 - e.g. make detector from radiopure materials, hence eliminating noise from radioactivity within detector
 - obviously the best method, but not always practical!
- Shield your detector against it
 - e.g. locate underground, surround with passive material, etc.
 - standard practice, but never 100% effective, and frequently expensive and/or inconvenient
- Don't trigger on it
 - e.g. require signals from multiple detection elements in coincidence
 - not always possible—some detection technologies can't be actively triggered in this way (e.g. radiochemical neutrino detectors)
- o Discriminate against it in software
 - find properties you can cut on, either event-by-event or statistically

Pulse Shape Discrimination

- Basic idea: time constant of scintillation light depends on specific ionisation of incoming particle
 - · various ways to measure this, e.g.
 - o amplitude comparison
 - o integral comparison
 - o hypothesis fitting
 - discrimination efficiency depends on signal amplitude (number of photoelectrons)
 - if signals are weak discrimination may only be possible on statistical rather than event-by-event basis

С

600

200

-200

 This is good for discriminating between nuclear recoils (WIMP, n) and electron recoils (β, γ)

1000, 2000, 3000, 4000, 5000, 6000

Detector-specific and very detector-dependent

ELECTRONIC NOISE

- Various possible sources of noise:
 - detector "dark current" (thermal noise etc.)
 - o usually low-amplitude: set threshold to cut it out
 - spurious "signals" from detector or electronics (sparks, mains spikes, etc.)
 - o try to eliminate at source
 - often very different in appearance from "real" signal, so can remove in software
 - require signals from multiple detectors in coincidence to eliminate at trigger level
 - signal-related noise (pick-up from adjacent channels, afterpulsing, etc.)
 - usually fairly easy to eliminate in software, but can be a nuisance because of spurious triggers, increased dead-time etc.

AMBIENT RADIOACTIVITY

Comes from long-lived nuclides (⁴⁰K, ²³²Th, ²³⁵U, ²³⁸U) or cosmogenic isotopes, e.g. ¹⁴C

- Decay products: α, β, γ, (n)
 - α: very short range, so removed by shielding
 - o but (α,n) reactions on nuclei outside detector are potential sources of neutrons
 - ${\bf o}$ surface contamination of $\alpha\text{-emitters}$ within detector can also be nasty
 - β: electrons—fairly short range, and scatter off electrons not nuclei
 - generally not a serious issue: relatively easy to shield, and signal is not WIMP-like
 - y: neutral, so harder to shield (more penetrating)
 - serious background, but scatter off electrons not nuclei different signature

gaseous: gets into

detectors

NEUTRON BACKGROUND

- Neutrons are neutral particles that scatter off nuclei
 - therefore particularly WIMP-like and nasty
- Not a "normal" radioactive decay product, but produced by fission, (α,n) or (γ,n) reactions
- Signal is very difficult to discriminate away
 - in fact neutron sources such as ²⁵²Cf or Am/Be regularly used to calibrate dark matter detectors
- Therefore need to shield against neutrons
 - ordinary hydrogen (¹H) both moderates (slows down) and captures neutrons, so hydrogenous materials (water, paraffin wax, plastics) are good neutron shields
 - once neutrons are moderated to thermal energies they no longer look like WIMPs to your detector

IDENTIFYING GALACTIC WIMPS

- Can also discriminate against background by identifying positive characteristics of your signal
 - e.g. something varying on timescale of *sidereal* day (23^h 56^m) likely to be astrophysical not terrestrial
- o Recall that we assume dark matter forms a spherical, isothermal halo round the Galaxy
 - WIMPs expected to have a Maxwell-Boltzmann distribution

$$f_0(u)du = n_W \frac{4}{\sqrt{\pi}} x^2 e^{-x^2} dx$$

where $x^2 = M_W u^2 / 2kT_W$ (x is a dimensionless velocity)

- Sun orbits Galaxy at ~220 km/s
 - therefore we should see a WIMP "headwind"

ANNUAL MODULATION IN WIMP RATE

 As seen by observer moving at velocity v, M-B distribution becomes

$$f_{obs}(w)dw = n_W \frac{4}{\sqrt{\pi}} x^2 e^{-(x^2 + \eta^2)} \frac{\sinh(2x\eta)}{2x\eta}$$

where $\mathbf{w} = \mathbf{u} + \mathbf{v}$ and $\eta = M_W v^2 / 2kT_W$

- Local circular speed around Galactic centre is 220±20 km/s
- Peculiar motion of Sun is (-10,5,7) km/s (in R, θ , z)
 - $_{ extstyle o}$ motion in heta seems least well known: sources vary between 5 and 15 o so Sun's velocity is about 230 km/s, ±10% or so
- However, the Earth's velocity will cause an annual cycle in this

velocity—sometimes it adds, sometimes subtracts

EARTH'S MOTION

- Ecliptic inclined at ~60° to Galactic plane
 - therefore maximum
 effect of Earth's
 velocity is ±V cos 60°= V/2 = 15 km/s

- this occurs at nodes where ecliptic and Galactic plane intersect—about June 2 and December 2
- therefore velocity of Earth around Galaxy is given by $V_{\rm E} = V_{\rm S} + V_{\rm II} {\rm cos}(\omega(t-t_0))$
 - where $\omega=2\pi/T$ is the Earth's angular velocity, t_0 is June 2 (day 153 of a normal year), $V_{\rm S}$ is the Sun's orbital velocity of 230 km/s or so, and $V_{||}=V\cos 60^{\circ}$ is the component of the Earth's velocity along the solar motion
- As rate depends on 1/v in FFH, this results in 15/230 = ±7%
 effect on event rate

ANNUAL MODULATION SIGNAL

- DAMA and DAMA/LIBRA clearly see an annual modulation
 - not a smoking gun
 - 1 year period **not** definitely astronomical (unlike sidereal day)
 - phase irritatingly close to seasonal (solstice/equinox) phase, because ecliptic longitude of Galactic pole is ~180°

DIRECTIONAL SIGNALS

- Ecliptic is tilted relative to Galactic plane
- Equator is tilted relative to ecliptic
- Therefore, as Earth rotates, orientation of detector wrt Galactic plane changes
 - this should result in a very strong shift in direction of incoming WIMPs, and therefore of nuclear recoils
 - and this should be a *sidereal* period—definite smoking gun
- Exploiting this requires directional sensitivity in your WIMP detector
 - this is hard
 - but see Dan Walker's lecture after Easter

SUMMARY

- WIMP interactions are expected to be rare events, so control of background is VITAL
- Multi-pronged approach is necessary
 - eliminate what sources you can
 - shield against unavoidable background sources
 - discriminate between background and signal in trigger or analysis
- Positive discrimination (pro-signal, as opposed to anti-background) relies on Galactic kinematic signatures of halo WIMPs
 - · annual modulation in rate
 - susceptible to systematic errors, and also relies on getting halo kinematics right
 - · diurnal modulation in direction
 - o great idea, but needs direction-sensitive detector