

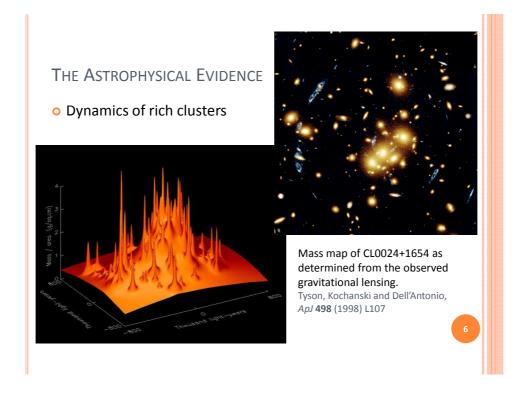



### THE ASTROPHYSICAL EVIDENCE

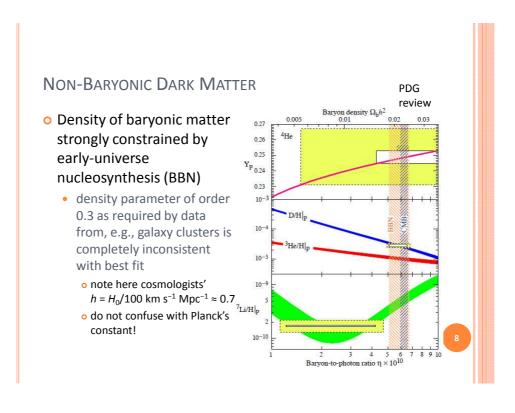
Rotation curves of spiral galaxies

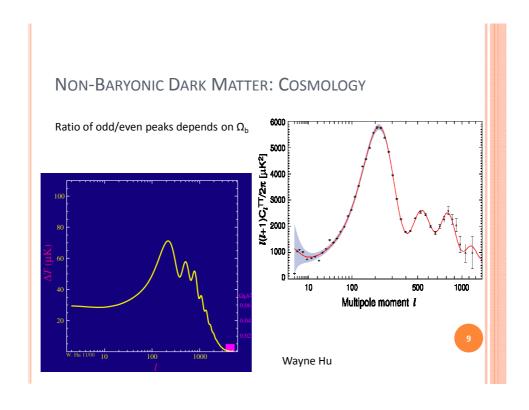


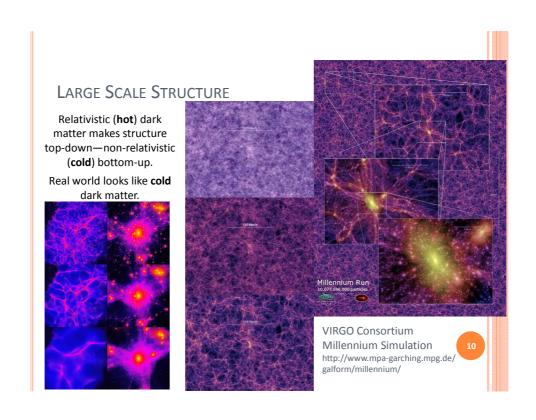


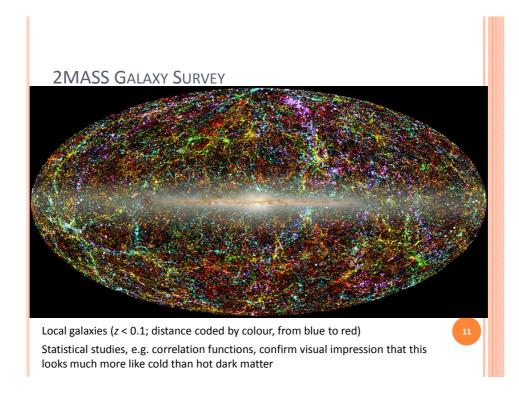


- flat at large radii: if mass traced light we would expect them to be Keplerian at large radii,  $v \propto r^{-1/2}$ , because the light is concentrated in the central bulge
  - o and disc light falls off exponentially, not  $\propto r^{-2}$  as required for flat rotation curve

### THE ASTROPHYSICAL EVIDENCE

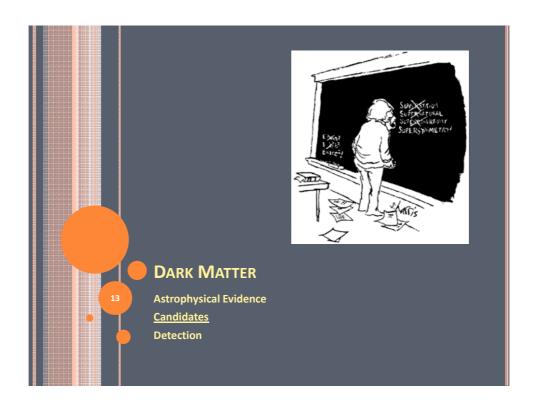

- Dynamics of rich clusters
  - Zwicky (1933!) noted that the velocities of galaxies in the Coma cluster were too high to be consistent with a bound system





# THE ASTROPHYSICAL EVIDENCE • Dynamics of rich clusters • mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium \*\*The Astrophysical Evidence\*\* • mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium \*\*The Astrophysical Evidence\*\* • mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium \*\*Astrophysical Evidence\*\* • Mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium \*\*Astrophysical Evidence\*\* \*\*Astrophysical Evidence\*\* • Mass of gas and gravitating mass can be extracted from X-ray emission from intracluster medium \*\*Astrophysical Evidence\*\* \*\*Astro




## THE ASTROPHYSICAL EVIDENCE: THE BULLET CLUSTER O Mass from lens mapping (blue) follows stars not gas (red) → dark matter is collisionless Composite Credit: X-ray: NASA/CXC/CfA/ M. Markevitch et al.; Lensing Map: NASA/STSCI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical: NASA/STScI; Magellan/U.Arizona/ D.Clowe et al.










### BRIEF SUMMARY OF ASTROPHYSICAL EVIDENCE • Many observables concur that $\Omega_{m0} \approx 0.3$ Most of this must be non-baryonic Atoms 4.6% • BBN and CMB concur that baryonic matter contributes $\Omega_{b0} \approx 0.05$ • Bullet Cluster mass distribution indicates that dark matter is collisionless No Standard Model candidate • neutrinos are too light, and are "hot" (relativistic at decoupling) o hot dark matter does not reproduce observed large-scale structure → BSM physics Atom: 13.7 BILLION YEARS AGO

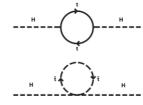


### DARK MATTER CANDIDATES

|                      | WIMPs      | SuperWIMPs | Light G    | Hidden DM | Sterile v | Axions    |
|----------------------|------------|------------|------------|-----------|-----------|-----------|
| Motivation           | GHP        | GHP        | GHP/NPFP   | GHP/NPFP  | v Mass    | Strong CP |
| Naturally Correct Ω  | Yes        | Yes        | No         | Possible  | No        | No        |
| Production Mechanism | Freeze Out | Decay      | Thermal    | Various   | Various   | Various   |
| Mass Range           | GeV-TeV    | GeV-TeV    | eV-keV     | GeV-TeV   | keV       | μeV-meV   |
| Temperature          | Cold       | Cold/Warm  | Cold/Warm  | Cold/Warm | Warm      | Cold      |
| Collisional          |            |            |            | ✓         |           |           |
| Early Universe       |            | <b>11</b>  |            | <b>√</b>  |           |           |
| Direct Detection     | <b>V</b> V |            |            | <b>√</b>  |           | <b>VV</b> |
| Indirect Detection   | <b>V</b> V | √          |            | √         | <b>VV</b> |           |
| Particle Colliders   | <b>V</b> V | <b>V</b> V | <b>V</b> V | √         |           |           |

GHP = Gauge Hierarchy Problem; NPFP = New Physics Flavour Problem  $\forall$  = possible signal;  $\forall \forall$  = expected signal

Jonathan Feng, ARAA 48 (2010) 495 (highly recommended)


1/

### PARTICLE PHYSICS MOTIVATIONS

### Gauge Hierarchy Problem

• in SM, loop corrections to Higgs mass give

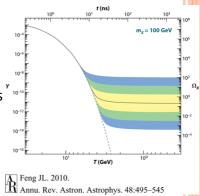
$$\Delta m_h^2 \approx \frac{\lambda^2}{16\pi^2} \int_{-\rho^2}^{\Lambda} \frac{d^4 \rho}{\rho^2} \approx \frac{\lambda^2}{16\pi^2} \Lambda^2$$



and there is no obvious reason why  $\Lambda \neq M_{Pl}$ 

- (Planck mass  $M_{\rm Pl}$  =  $(\hbar c/G)^{1/2} \approx 1.2 \times 10^{19}$  GeV = mass scale for quantum gravity)
- supersymmetry fixes this by introducing a new set of loop corrections that cancel those from the SM
- o new physics at TeV scale will also fix it (can set  $\Lambda \sim 1$  TeV)

### New Physics Flavour Problem

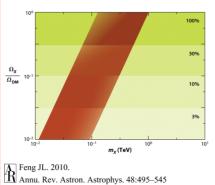

- we observe conservation or near-conservation of B, L, CP
  - o and do not observe flavour-changing neutral currents
- new physics has a nasty tendency to violate these
  - o can require fine-tuning or new discrete symmetries, e.g. R-parity

15

### **WIMPs**

### Weakly Interacting Massive Particles

- produced thermally in early universe
- annihilate as universe cools, but "freeze out" when density drops so low that annihilation no longer occurs with meaningful rate



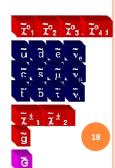

- ${\bf o}$  "target volume" per particle in time  $\Delta t$  is  $\sigma_{\rm A} {\it v} \Delta t,$  where  $\sigma_{\rm A}$  is cross-section
- so annihilation rate is  $n_f(\sigma_A v)$  where  $n_f$  is number density
- freeze-out occurs when  $H \approx n_f \langle \sigma_A v \rangle$ , and in radiation era we have  $H \propto T^2/M_{Pl}$  (because  $\rho \propto T^4$  and  $G \propto 1/M_{Pl}^2$ )
- can estimate relic density by considering freeze-out

$$n_f \approx (m_\chi T_f)^{3/2} e^{-m_\chi/T_f} \approx \frac{T_f^2}{M_{Pl} \langle \sigma_A v \rangle}$$

### WIMP RELIC DENSITY

- Oconverting to Ω gives  $Ω_X = \frac{m_X n_0}{\rho_c} \approx \frac{m_X T_0^3}{\rho_c} \frac{n_f}{T_f^3} \approx \frac{x_f T_0^3}{\rho_c M_{Pl}} \langle \sigma_A v \rangle^{-1}$  where  $x_f = m_X / T_f$ 
  - and typically  $\langle \sigma_A v \rangle \propto 1/m_\chi^2$  or  $v^2/m_\chi^2$  (S or P wave respectively)
- o Consequence: weakly interacting massive particles with




electroweak-scale masses "naturally" have reasonable relic densities

 and therefore make excellent dark matter candidates

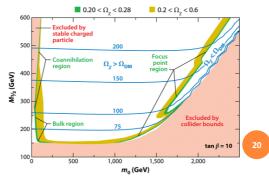
### SUPERSYMMETRY (SUSY)

- o Extension to Standard Model in which all fermions have partner particles that are bosons, and vice versa
  - if this were an exact symmetry we'd see twice as many particles
    - therefore it is a "broken" symmetry—sparticles much more massive than SM particles
- Slightly extended "normal" particle content
  - need to generate SUSY masses leads to extra Higgs particles
- Some SUSY particles are mixed states
  - neutralinos χ are mixed partners of Z, y, h and H





### SUPERSYMMETRIC WIMPS

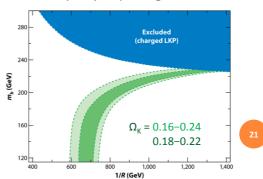

- Supersymmetry solves the GHP by introducing cancelling corrections
  - predicts a complete set of new particles
    - o well-defined interactions, but unknown masses (10 GeV few TeV)
  - NPFP often solved by introducing R-parity—new discrete quantum number
    - then lightest supersymmetric particle is stable
    - o best DM candidate is lightest neutralino (mixed spartner of W<sup>0</sup>, B, H, h)
  - far too many free parameters in most general supersymmetric models
    - o so usually consider constrained models with simplifying assumptions
    - o most common constrained model: mSUGRA
      - parameters  $m_0$ ,  $M_{1/2}$ ,  $A_0$ ,  $\tan \beta$ ,  $sign(\mu)$
    - o mSUGRA neutralino is probably the best studied DM candidate

1

### **SUSY WIMPs**

this means that particle = antiparticle

- Neutralinos are Majorana fermions and therefore selfannihilate
  - Pauli exclusion principle implies that  $\chi_1\chi_1$  annihilation prefers to go to spin 0 final state
  - $f\overline{f}$  prefers spin 1
    - therefore annihilation cross-section is suppressed
    - o hence  $\Omega_\chi$  tends to be too high
    - parameter space very constrained by WMAP




### KALUZA-KLEIN WIMPS

- In extra-dimension models, SM particles have partners with the same spin
  - "tower" of masses separated by  $R^{-1}$ , where R is size of compactified extra dimension
  - new discrete quantum number, K-parity, implies lightest KK

particle is stable

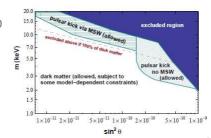
- this is the potential WIMP candidate
- o usually B1
- annihilation not spin-suppressed (it's a boson), so preferred mass higher



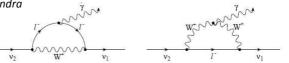
### **SUPERWIMPS**

- Massive particles with superweak interactions
- produced by decay of metastable WIMP
  - $\circ$  because this decay is superweak, lifetime is very long (10<sup>3</sup>–10<sup>7</sup> s)
  - WIMP may be neutralino, but could be charged particle
    - dramatic signature at LHC (stable supermassive particle)
- candidates:
  - o weak-scale gravitino
  - o axino
  - o equivalent states in KK theories
- these particles cannot be directly detected, but indirectdetection searches and colliders may see them
  - they may also have detectable astrophysical signatures

### **LIGHT GRAVITINOS**


- Expected in gauge-mediated supersymmetry breaking
  - in these models gravitino has m < 1 GeV
    - o neutralinos decay through γG, so cannot be dark matter
  - gravitinos themselves are possible DM candidates
    - o but tend to be too light, i.e. too warm, or too abundant
    - relic density in minimal scenario is  $\Omega_{\tilde{G}} \approx 0.25 \ m_{\tilde{G}}/(100 \ \text{eV})$ 
      - ullet so require  $m_{
        m G}$  < 100 eV for appropriate relic density
      - but require  $m_{\rm G}$  > 2 keV for appropriate large-scale structure
  - models which avoid these problems look contrived

2


### Kusenko, DM10

### STERILE NEUTRINOS

 Seesaw mechanism for generating small v<sub>L</sub> masses implies existence of massive right-handed sterile states



- usually assumed that  $M_{\rm R} \approx M_{\rm GUT}$ , in which case sterile neutrinos are not viable dark matter candidates
- but smaller Yukawa couplings can combine with smaller  $M_{\rm R}$  to produce observed  ${\rm v_L}$  properties together with sterile neutrino at keV mass scale—viable dark matter candidate
  - such a sterile neutrino could also explain observed high velocities of pulsars (asymmetry in supernova explosion generating "kick")
  - these neutrinos are not entirely stable:  $\tau >> 1/H_0$ , but they do decay and can generate X-rays via loop diagrams—therefore potentially detectable by, e.g., *Chandra*





### STERILE NEUTRINOS

### Production mechanisms

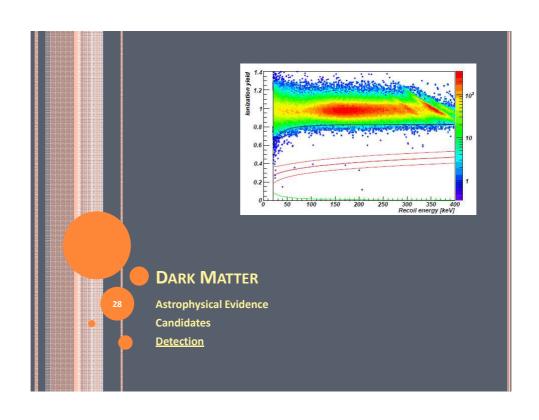
- oscillation at *T* ≈ 100 MeV
  - $\circ$  Ω<sub>v</sub>  $\propto$  sin<sup>2</sup> 2 $\vartheta$   $m^{1.8}$  from numerical studies
  - o always present: requires small mass and very small mixing angle
    - not theoretically motivated: some fine tuning therefore required
- resonant neutrino oscillations
  - o if universe has significant lepton number asymmetry, L > 0
- decays of heavy particles
  - o e.g. singlet Higgs driving sterile neutrino mass term

### Observational constraints

- X-ray background
- presence of small-scale structure
  - o sterile neutrinos are "warm dark matter" with Mpc free-streaming

20

### **AXIONS**

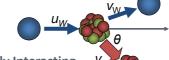

### Introduced to solve the "strong CP problem"

- SM Lagrangian includes CP-violating term which should contribute to, e.g., neutron electric dipole moment
  - o neutron doesn't appear to have an EDM ( $<3 \times 10^{-26}$  e cm, cf. naïve expectation of  $10^{-16}$ ) so this term is strongly suppressed
- introduce new pseudoscalar field to kill this term (Peccei-Quinn mechanism)
  - o result is an associated pseudoscalar boson, the axion

### Axions are extremely light (<10 meV), but are cold dark matter</li>

- not produced thermally, but via phase transition in very early universe
  - o if this occurs before inflation, visible universe is all in single domain
  - if after inflation, there are many domains, and topological defects such as axion domain walls and axionic strings may occur






### **DETECTION OF DARK MATTER CANDIDATES**

- Direct detection
  - dark matter particle interacts in your detector and you observe it
- Indirect detection
  - you detect its decay/annihilation products or other associated phenomena
- Collider phenomenology
  - it can be produced at, say, LHC and has a detectable signature
- Cosmology
  - it has a noticeable and characteristic impact on BBN or CMB
- Focus here on best studied candidates—WIMPs and axions

### **DIRECT DETECTION:** WIMP-Nucleus Interaction





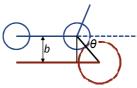
- · it doesn't happen very often: Weakly Interacting, remember?
- it is non-relativistic: WIMPs are bound in Galactic halo, so have velocities ~220 km/s ( $v/c \sim 10^{-3}$ )
- it is elastic scattering—momentum and KE conserved
- o If we assume that spin plays no role, we can model this as collision of two hard spheres of masses  $M_{W}$ ,  $M_{T}$ 
  - we find that  $v_T = \frac{2M_W}{M_W + M_T} u_W \cos \theta$

- assuming nucleus initially at rest,  $u_T = 0$ • maximal for head-on scattering (cos  $\theta$  = 1), and for  $M_{\rm W}$  =  $M_{\rm T}$

 ${\color{red} \circ}~u_{\rm W}$  and its likely direction can be calculated by modelling the halo

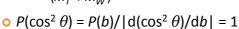
### WIMP-Nucleus Interaction

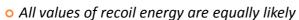



- Basic numbers:
  - local density of DM can be deduced from Sun's orbital velocity via

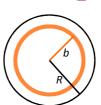
$$\rho(R_{Sun}) = \frac{1}{4\pi R_{Sun}^2} \frac{dM_r}{dr} \bigg|_{R_{Sun}} = \frac{1}{4\pi R_{Sun}^2} \frac{V^2}{G}$$

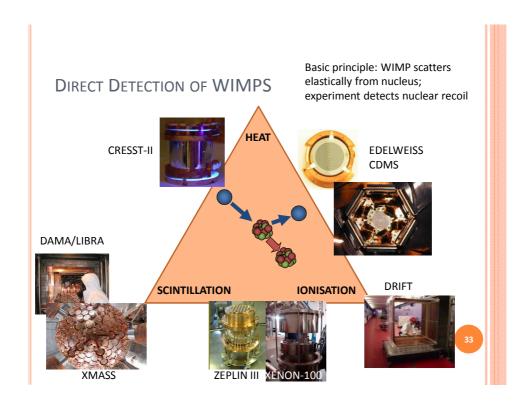
- this gives 0.3-0.5 GeV/cm<sup>3</sup> depending on exactly what you assume for V and  $R_{sun}$  (neither of which is very well known)
- WIMP rest energy expected to be in range 10-1000 GeV
  - o so, between 0.3 and 50 particles per litre in solar neighbourhood
  - o note that this assumes halo is an isothermal sphere—it might not be!
- Kinetic energy of WIMP  $\frac{1}{2}M_WV^2 \approx 2.7-270$  keV if  $V \sim 220$  km/s
  - o best case scenario: all of this transferred to nucleus—but this will not normally happen (requires  $\cos \theta = 1$  and  $M_W = M_T$ )

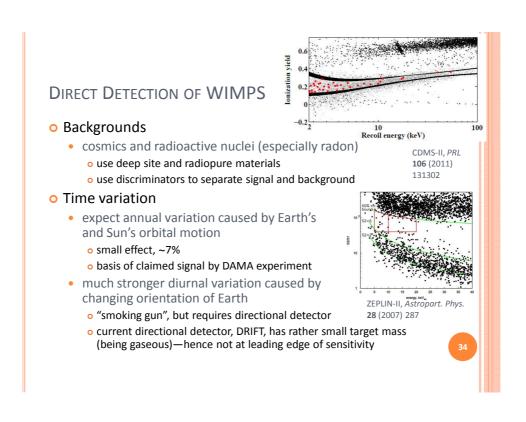

### WIMP-Nucleus Interaction: Energy Spectrum


- Scattering angle depends on impact parameter b
  - $\sin \theta = b/(R_W + R_T) = b/R$
  - Probability of impact parameter between b and b + db is area of shaded region divided by total area  $= 2\pi b db / \pi R^2 = (2b/R^2) db$



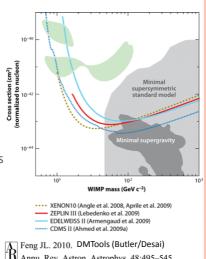

• Transferred energy is  $\frac{1}{2}M_{T}v_{T}^{2} = E_{T}$  where  $E_{T} = \frac{M_{T}M_{W}}{(M_{T} + M_{W})^{2}} E_{W} \cos^{2} \theta$ 


$$E_T = \frac{M_T M_W}{(M_T + M_W)^2} E_W \cos^2 \theta$$






• and for a given halo model the only unknown is  $M_{\rm W}$ 



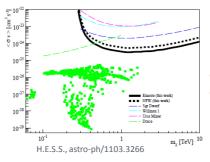


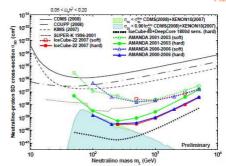



### **DIRECT DETECTION OF WIMPS**

- Interaction with nuclei can be spin-independent or spin-dependent
  - spin-dependent interactions require nucleus with net spin
  - · most direct detection experiments focus on SI, and limits are much better in this case
- Conflict between DAMA and others tricky to resolve
  - · requires very low mass and high cross-section
    - o if real, may point to a non-supersymmetric DM candidate




Annu. Rev. Astron. Astrophys. 48:495–545


### INDIRECT DETECTION OF WIMPS

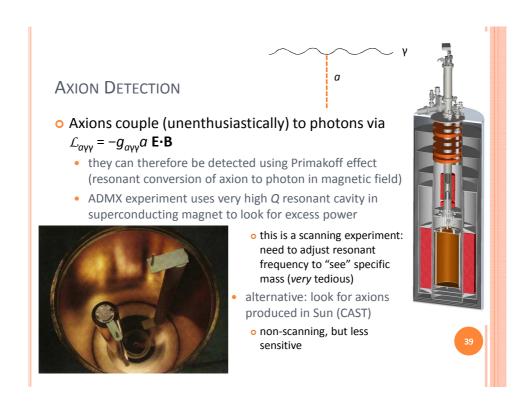
- o After freeze-out, neutralino self-annihilation is negligible in universe at large
  - but neutralinos can be captured by repeated scattering in massive bodies, e.g. Sun, and this will produce a significant annihilation rate
    - number of captured neutralinos  $N = C AN^2$  where C is capture rate and A is  $\langle \sigma_A v \rangle$  per volume
    - o if steady state reached, annihilation rate is just C/2, therefore determined by scattering cross-section
  - annihilation channels include W+W-, bb,  $\tau^+\tau^-$ , etc. which produce secondary neutrinos
    - o these escape the massive object and are detectable by neutrino telescopes

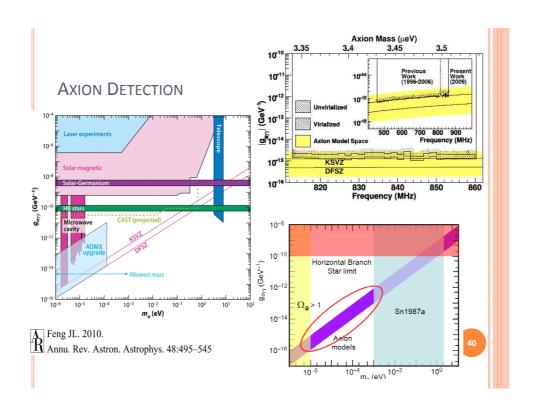
### INDIRECT DETECTION OF WIMPS

- Relatively high threshold of neutrino telescopes implies greater sensitivity to "hard" neutrinos, e.g. from WW
- Also possible that neutralinos might collect near Galactic centre
  - in this region other annihilation products, e.g. γ-rays, could escape






Braun & Hubert, 31st ICRC (2009): astro-ph/0906.1615


- search by H.E.S.S. found nothing
  - signals at lower energies could be astrophysical not astroparticle

37

### LHC DETECTION OF WIMPS AND SWIMPS

- WIMPs show up at LHC through missing-energy signature
  - note: not immediate proof of dark-matter status
    - long-lived but not stable neutral particle would have this signature but would not be DM candidate
    - need to constrain properties enough to calculate expected relic density if particle is stable, then check consistency
- SuperWIMP parents could also be detected
  - if charged these would be spectacular, because of extremely long lifetime
    - o very heavy particle exits detector without decaying
      - if seen, could in principle be trapped in external water tanks, or even dug out of cavern walls (Feng: "new meaning to the phrase 'data mining'")
  - if neutral, hard to tell from WIMP proper
    - but mismatch in relic density, or conflict with direct detection, possible clues





### DARK MATTER: SUMMARY

- Astrophysical evidence for dark matter is consistent and compelling
  - not an unfalsifiable theory—for example, severe conflict between BBN and WMAP on  $\Omega_{\rm b}$  might have scuppered it
- o Particle physics candidates are many and varied
  - and in many cases are not *ad hoc* inventions, but have strong independent motivation from within particle physics
- Unambiguous detection is possible for several candidates, but will need careful confirmation
  - interdisciplinary approaches combining direct detection, indirect detection, conventional high-energy physics and astrophysics may well be required

## THE END

