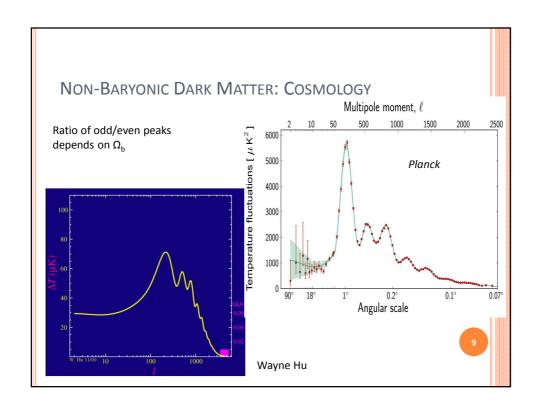
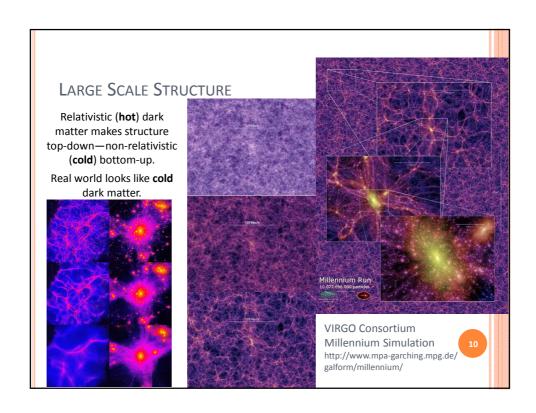
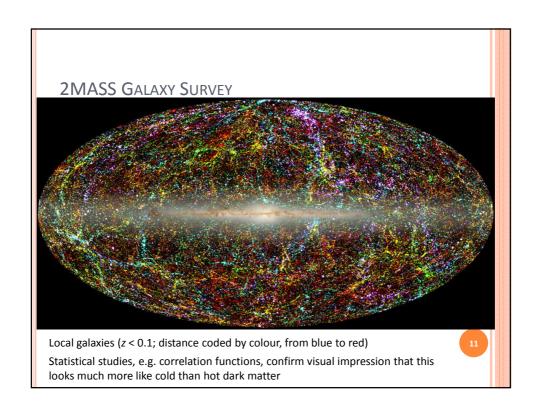
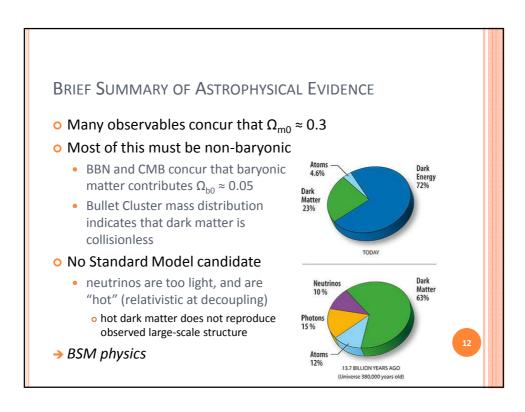


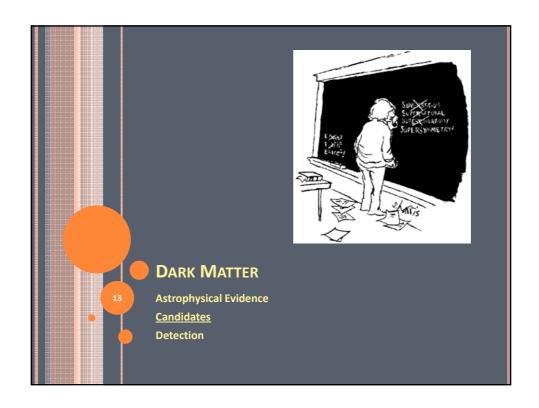

# THE ASTROPHYSICAL EVIDENCE • Rotation curves of spiral galaxies • Rotation curves of spiral galaxies • flat at large radii: if mass traced light we would expect them to be Keplerian at large radii, v ∝ r⁻¹/², because the light is concentrated in the central bulge • and disc light falls off exponentially, not ∝ r⁻² as required for flat rotation curve







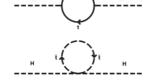







## DARK MATTER CANDIDATES

|                      | WIMPs      | SuperWIMPs | Light G   | Hidden DM | Sterile v | Axions    |
|----------------------|------------|------------|-----------|-----------|-----------|-----------|
| Motivation           | GHP        | GHP        | GHP/NPFP  | GHP/NPFP  | ν Mass    | Strong CP |
| Naturally Correct Ω  | Yes        | Yes        | No        | Possible  | No        | No        |
| Production Mechanism | Freeze Out | Decay      | Thermal   | Various   | Various   | Various   |
| Mass Range           | GeV-TeV    | GeV-TeV    | eV-keV    | GeV-TeV   | keV       | μeV-meV   |
| Temperature          | Cold       | Cold/Warm  | Cold/Warm | Cold/Warm | Warm      | Cold      |
| Collisional          |            |            |           | ✓         |           |           |
| Early Universe       |            | <b>V</b> V |           | <b>√</b>  |           |           |
| Direct Detection     | <b>VV</b>  |            |           | <b>√</b>  |           | <b>VV</b> |
| Indirect Detection   | <b>V</b> V | √          |           | ✓         | <b>VV</b> |           |
| Particle Colliders   | <b>V</b> V | <b>V</b> V | 11        | √         |           |           |


GHP = Gauge Hierarchy Problem; NPFP = New Physics Flavour Problem  $\forall$  = possible signal;  $\forall$  = expected signal

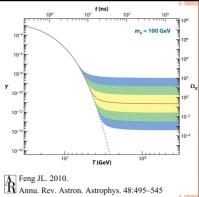
Jonathan Feng, ARAA 48 (2010) 495 (highly recommended)

## PARTICLE PHYSICS MOTIVATIONS

- Gauge Hierarchy Problem
  - in SM, loop corrections to Higgs mass give

$$\Delta m_h^2 \approx \frac{\lambda^2}{16\pi^2} \mathring{\int} \frac{d^4 p}{\rho^2} \approx \frac{\lambda^2}{16\pi^2} \Lambda^2$$



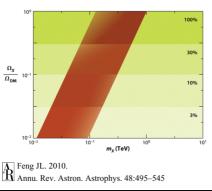

and there is no obvious reason why  $\Lambda \neq M_{Pl}$ 

- o supersymmetry fixes this by introducing a new set of loop corrections that cancel those from the SM
- o new physics at TeV scale will also fix it (can set Λ ~ 1 TeV)
- New Physics Flavour Problem
  - we observe conservation or near-conservation of B, L, CP
    - o and do not observe flavour-changing neutral currents
  - new physics has a nasty tendency to violate these
    - o can require fine-tuning or new discrete symmetries, e.g. R-parity



### **WIMPs**

- Weakly Interacting Massive Particles
  - produced thermally in early universe
  - annihilate as universe cools, but "freeze out" when density drops so low that annihilation no longer occurs with meaningful rate




- "target volume" per particle in time  $\Delta t$  is  $\sigma_{\Delta} \nu \Delta t$ , where  $\sigma_{\Delta}$  is cross-section
- o so annihilation rate is  $n_f(\sigma_A v)$  where  $n_f$  is number density
- freeze-out occurs when  $H \approx n_f \langle \sigma_A v \rangle$ , and in radiation era we have  $H \propto T^2/M_{Pl}$  (because  $\rho \propto T^4$  and  $G \propto 1/M_{Pl}^2$ )
- can estimate relic density by considering freeze-out

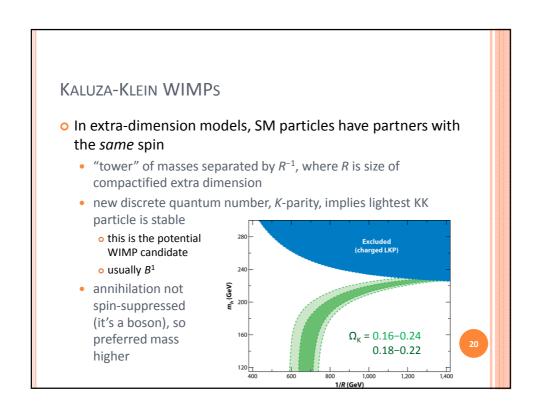
$$n_f \approx (m_\chi T_f)^{3/2} e^{-m_\chi/T_f} \approx \frac{T_f^2}{M_{Pl} \langle \sigma_A v \rangle}$$

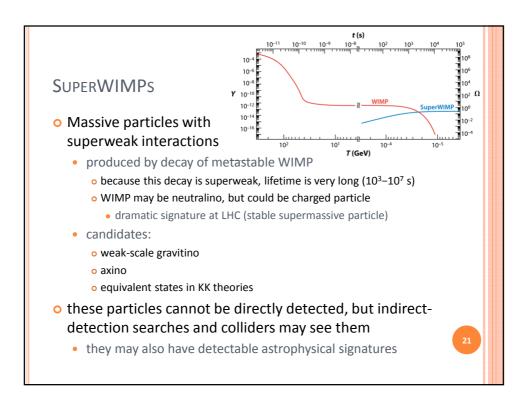
### WIMP RELIC DENSITY

- o Converting to Ω gives  $Ω_X = \frac{m_X n_0}{\rho_c} \approx \frac{m_X T_0^3}{\rho_c} \frac{n_f}{T_f^3} \approx \frac{x_f T_0^3}{\rho_c M_{Pl}} \langle \sigma_A v \rangle^{-1}$ where  $x_f = m_X / T_f$ 
  - and typically  $\langle \sigma_A v \rangle \propto 1/m_\chi^2$  or  $v^2/m_\chi^2$  (S or P wave respectively)
- o Consequence: weakly interacting massive particles with



electroweak-scale masses "naturally" have reasonable relic densities


 and therefore make excellent dark matter candidates


17

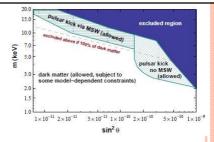
### SUPERSYMMETRIC WIMPS

- Supersymmetry solves the GHP by introducing cancelling corrections
  - predicts a complete set of new particles
  - NPFP often solved by introducing R-parity—new discrete quantum number
    - then lightest supersymmetric particle is stable
    - o best DM candidate is lightest neutralino (mixed spartner of W<sup>0</sup>, B, H, h)
  - far too many free parameters in most general supersymmetric models
    - o so usually consider constrained models with simplifying assumptions
    - o most common constrained model: mSUGRA
      - parameters  $m_0$ ,  $M_{1/2}$ ,  $A_0$ ,  $\tan \beta$ ,  $sign(\mu)$
    - o mSUGRA neutralino is probably the best studied DM candidate

## **SUSY WIMPs** o Neutralinos are Majorana fermions and therefore self-• Pauli exclusion principle implies that $\chi_1 \chi_1$ annihilation prefers to go to spin 0 final state • $f\overline{f}$ prefers spin 1 $\blacksquare$ 0.20 < $\Omega_{\chi}$ < 0.28 • therefore annihilation cross-section is suppressed $\Omega_{\nu} > \Omega_{\rm DM}$ $_{\text{o}}$ hence $\Omega_{_{\chi}}$ tends to be too high o parameter space very constrained by WMAP $\tan \beta = 10$ $m_0^{}$ (GeV)

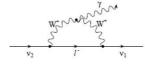





### **LIGHT GRAVITINOS**

- o Expected in gauge-mediated supersymmetry breaking
  - in these models gravitino has m < 1 GeV
    - ${\color{blue} \circ}$  neutralinos decay through  $\gamma \tilde{G},$  so cannot be dark matter
  - gravitinos themselves are possible DM candidates
    - o but tend to be too light, i.e. too warm, or too abundant
    - relic density in minimal scenario is  $\Omega_{\tilde{G}} \approx 0.25 \ m_{\rm G}/(100 \ {\rm eV})$ 
      - so require  $m_{\rm G}$  < 100 eV for appropriate relic density
      - but require  $m_{\rm G}$  > 2 keV for appropriate large-scale structure
  - · models which avoid these problems look contrived

Kusenko, DM10


### STERILE NEUTRINOS

 Seesaw mechanism for generating small v<sub>L</sub> masses implies existence of massive right-handed sterile states



- usually assumed that  $M_{\rm R} \approx M_{\rm GUT}$  in which case sterile neutrinos are not viable dark matter candidates
- but smaller Yukawa couplings can combine with smaller  $M_{\rm R}$  to produce observed  ${\rm v_L}$  properties together with sterile neutrino at keV mass scale—viable dark matter candidate
  - such a sterile neutrino could also explain observed high velocities of pulsars (asymmetry in supernova explosion generating "kick")
  - these neutrinos are not entirely stable:  $\tau >> 1/H_0$ , but they do decay and can generate X-rays via loop diagrams—therefore potentially detectable by, e.g., Chandra





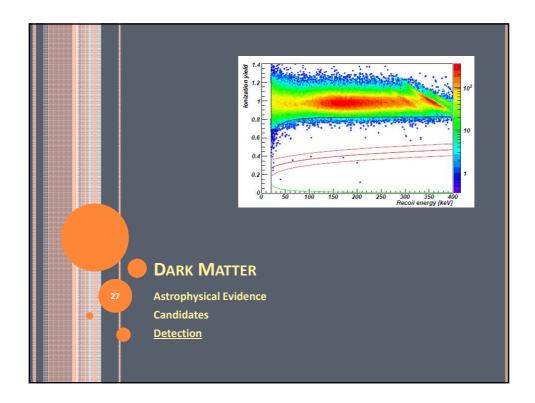
23

### STERILE NEUTRINOS

### Production mechanisms

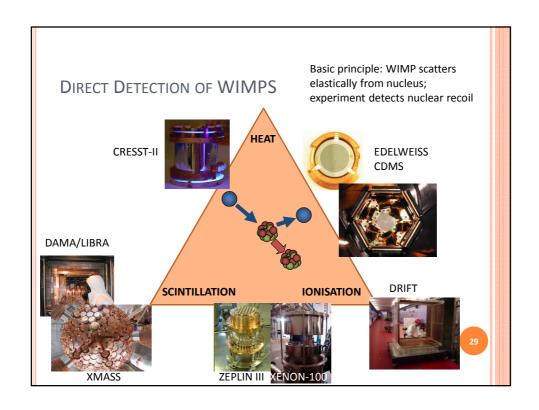
- oscillation at T≈ 100 MeV
  - $\circ$  Ω<sub>v</sub>  $\propto$  sin<sup>2</sup> 2 $\vartheta$   $m^{1.8}$  from numerical studies
  - o always present: requires small mass and very small mixing angle
    - not theoretically motivated: some fine tuning therefore required
- resonant neutrino oscillations
  - o if universe has significant lepton number asymmetry, L > 0
- decays of heavy particles
  - o e.g. singlet Higgs driving sterile neutrino mass term

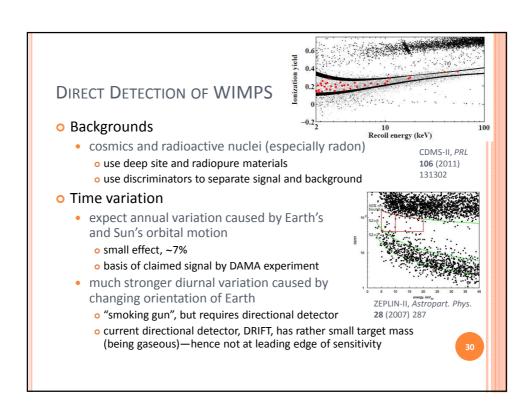
### Observational constraints

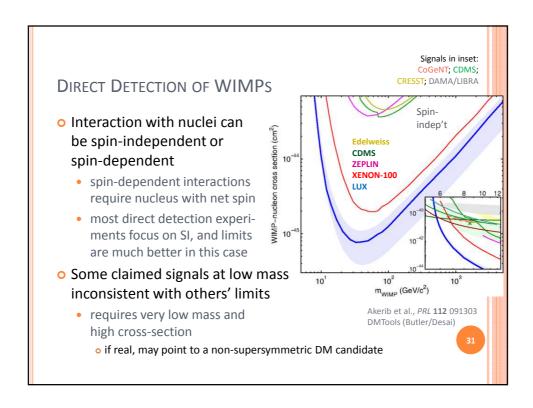

- X-ray background
- presence of small-scale structure
  - o sterile neutrinos are "warm dark matter" with Mpc free-streaming

### **AXIONS**

- Introduced to solve the "strong CP problem"
  - SM Lagrangian includes CP-violating term which should contribute to, e.g., neutron electric dipole moment
    - o neutron doesn't appear to have an EDM (<3×10 $^{-26}$  e cm, cf. naïve expectation of  $10^{-16}$ ) so this term is strongly suppressed
  - introduce new pseudoscalar field to kill this term (Peccei-Quinn mechanism)
    - o result is an associated pseudoscalar boson, the axion
- Axions are extremely light (<10 meV), but are cold dark matter
  - not produced thermally, but via phase transition in very early universe
    - o if this occurs before inflation, visible universe is all in single domain
    - if after inflation, there are many domains, and topological defects such as axion domain walls and axionic strings may occur

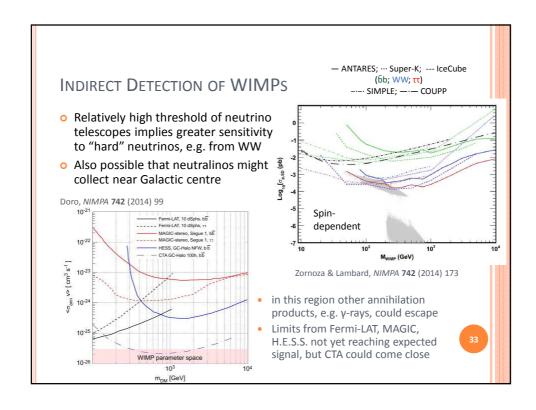

2

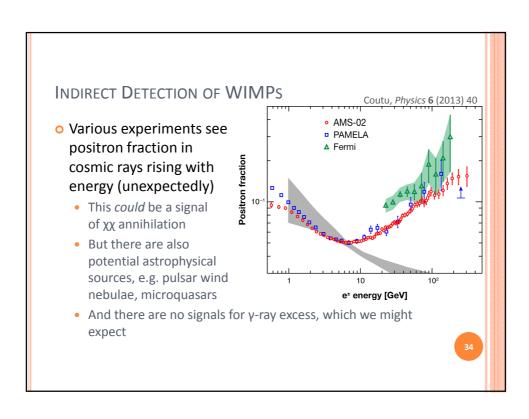

## AXIONS • Axion mass is $m_a \approx 6 \ \mu \text{eV} \times f_a/(10^{12} \ \text{GeV})$ where $f_a$ is the unknown mass scale of the PQ mechanism • Calculated relic density is $\Omega_a \approx 0.4$ $\vartheta^2 \ (f_a/10^{12} \ \text{GeV})^{1.18}$ where $\vartheta$ is initial vacuum misalignment • so need $f_a < 10^{12} \ \text{GeV}$ to avoid overclosing universe • astrophysical constraints require $f_a > 10^9 \ \text{GeV}$ • therefore $6 \ \mu \text{eV} < m_a < 6 \ \text{meV}$




### **DETECTION OF DARK MATTER CANDIDATES**

- Direct detection
  - dark matter particle interacts in your detector and you observe it
- Indirect detection
  - you detect its decay/annihilation products or other associated phenomena
- Collider phenomenology
  - it can be produced at, say, LHC and has a detectable signature
- Cosmology
  - it has a noticeable and characteristic impact on BBN or CMB
- Focus here on best studied candidates—WIMPs and axions






### INDIRECT DETECTION OF WIMPS

- After freeze-out, neutralino self-annihilation is negligible in universe at large
  - but neutralinos can be captured by repeated scattering in massive bodies, e.g. Sun, and this will produce a significant annihilation rate
    - number of captured neutralinos  $N = C AN^2$  where C is capture rate and A is  $\langle \sigma_A v \rangle$  per volume
    - if steady state reached, annihilation rate is just C/2, therefore determined by scattering cross-section
  - annihilation channels include W<sup>+</sup>W<sup>-</sup>,  $b\bar{b}$ ,  $\tau^+\tau^-$ , etc. which produce secondary neutrinos
    - these escape the massive object and are detectable by neutrino telescopes





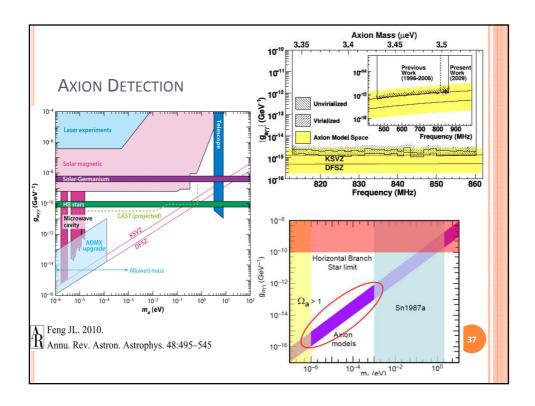
## LHC DETECTION OF WIMPS AND SWIMPS

- WIMPs show up at LHC through missing-energy signature
  - note: not immediate proof of dark-matter status
    - long-lived but not stable neutral particle would have this signature but would not be DM candidate
    - need to constrain properties enough to calculate expected relic density if particle *is* stable, then check consistency
- SuperWIMP parents could also be detected
  - if charged these would be spectacular, because of extremely long lifetime
    - o very heavy particle exits detector without decaying
      - if seen, could in principle be trapped in external water tanks, or even dug out of cavern walls (Feng: "new meaning to the phrase 'data mining'")
  - if neutral, hard to tell from WIMP proper
    - but mismatch in relic density, or conflict with direct detection, possible

3!

### **AXION DETECTION**

- Axions couple (unenthusiastically) to photons via  $\mathcal{L}_{avv} = -g_{avv}a$  **E·B** 
  - they can therefore be detected using Primakoff effect (resonant conversion of axion to photon in magnetic field)
  - ADMX experiment uses very high Q resonant cavity in superconducting magnet to look for excess power




 this is a scanning experiment: need to adjust resonant frequency to "see" specific mass (very tedious)

а

- alternative: look for axions produced in Sun (CAST)
  - non-scanning, but less sensitive





### DARK MATTER: SUMMARY

- Astrophysical evidence for dark matter is consistent and compelling
  - not an unfalsifiable theory—for example, severe conflict between BBN and WMAP on  $\Omega_{\rm b}$  might have scuppered it
- o Particle physics candidates are many and varied
  - and in many cases are not *ad hoc* inventions, but have strong independent motivation from within particle physics
- Unambiguous detection is possible for several candidates, but will need careful confirmation
  - interdisciplinary approaches combining direct detection, indirect detection, conventional high-energy physics and astrophysics may well be required

