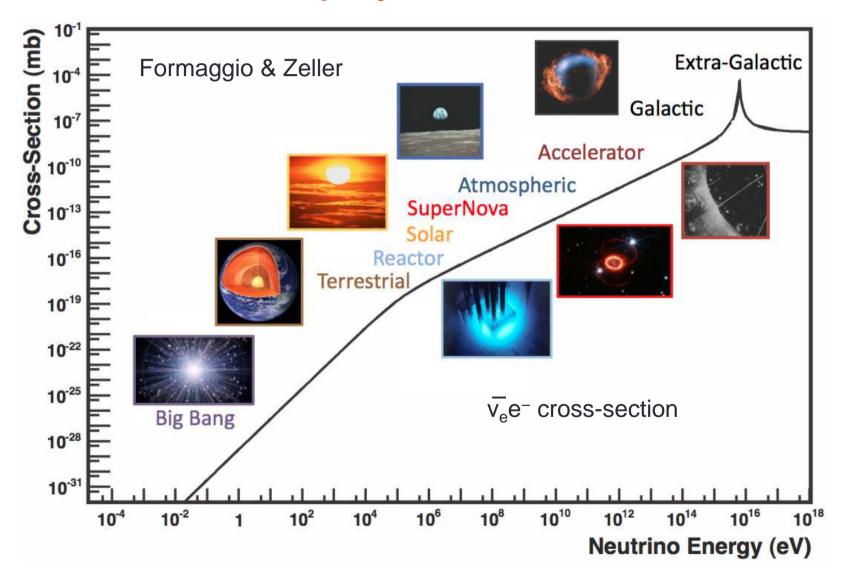

# HIGH ENERGY PARTICLE ASTROPHYSICS


1

High Energy Neutrinos

#### **Neutrino astrophysics**



### **Neutrino astrophysics**



4

**Emission Mechanisms** 

## Charged pion decay

- If an object accelerates protons to high energies, we should get charged pion production via  $p + p \rightarrow p + n + \pi^+$ 
  - (i.e. energetic proton hits ambient gas; as protons are more common than neutrons this reaction will be more common than  $p + n \rightarrow p + p + \pi^-$ )
  - $\pi^+$  then decays to  $\mu^+ v_{\mu}$  ( $\pi^-$  to  $\mu^- \overline{v_{\mu}}$ )
  - other flavours of neutrino will be produced in flight by neutrino oscillation
- This is essentially the same mechanism that produces high-energy  $\gamma\text{-rays}$  from  $\pi^0$  decay
  - any source that is known (from its spectrum) to produce  $\pi^0$  decay photons is **guaranteed** to be a neutrino source (but possibly not a *detectable* neutrino source, because of the low cross-section)

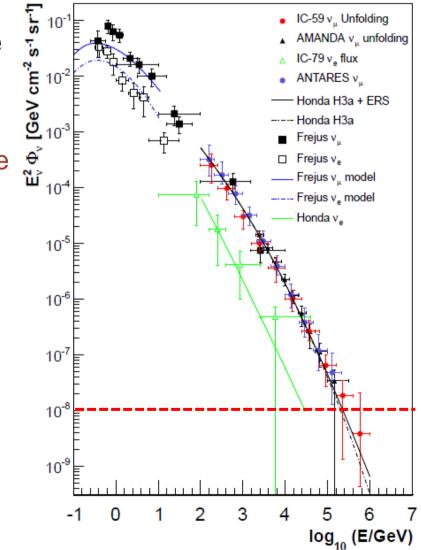
#### Waxman-Bahcall bound

- We know the spectrum of high-energy cosmic rays, and pγ interactions with ambient radiation—e.g. CMB photons must occur and also produce pions, mainly via the Δ resonance
  - therefore we can calculate the expected neutrino flux from this source
  - this is the Waxman-Bahcall bound
- Assume an energy spectrum  $\propto E^{-2}$ 
  - then energy production rate in CRs between  $E_p$  and  $E_p$  + d $E_p$  is

$$\dot{\mathcal{E}}(E_{\rm p})dE_{\rm p} = \dot{N}_{\rm p}(E_{\rm p}) \times E_{\rm p}dE_{\rm p} = \frac{N_0}{E_{\rm p}}dE_{\rm p}$$

- Integrate this between 10<sup>19</sup> and 10<sup>21</sup> eV, substitute in measured CR energy flux of 5×10<sup>37</sup> J Mpc<sup>-3</sup> yr<sup>-1</sup>
- solve for  $\dot{N}_0$  to get ~10<sup>37</sup> J Mpc<sup>-3</sup> yr<sup>-1</sup>

### Waxman-Bahcall bound


- Now suppose that each proton loses some fraction  $\eta$  of its energy in pion production before it escapes from the source
  - roughly ¼ of that goes into neutrinos
  - resulting neutrino energy density is

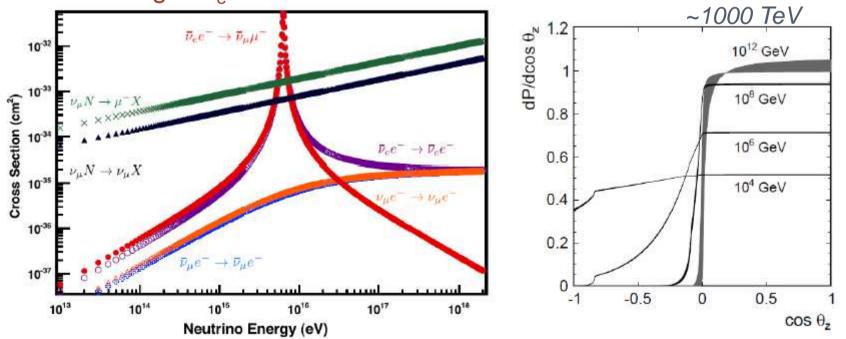
$$E_{\nu}^{2} \frac{\mathrm{d}N_{\nu}}{dE_{\nu}} \simeq \frac{1}{4} \xi_{z} \eta t_{\mathrm{H}} E_{\mathrm{p}}^{2} \frac{\mathrm{d}\dot{N}_{\mathrm{p}}}{\mathrm{d}E_{\mathrm{p}}}$$

- $t_{\rm H}$  is the Hubble time,  $\xi_z$  is an evolution factor which is probably of order 3 or so (to allow for more cosmic ray production in earlier epochs because of more massive stars and AGN)
- convert from energy density to flux by multiplying by c/4π (volume of neutrinos crossing unit area in unit time is c; divide by 4π to get flux per unit solid angle)
- putting in numbers we get  $E_{\nu}^2 \Phi_{\nu_{\mu}} \simeq \xi_z \eta \times 10^4 \text{ GeV m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

### High-energy neutrino astrophysics

- Neutrino telescopes are capable of reaching Waxman-Bahcall bound
  - problem is that there is an irreducible background of neutrinos from CR interactions in our atmosphere— "atmospheric neutrinos"
- Neutrinos from astrophysical sources are identifiable only at extremely high energies, above about 100 TeV
  - therefore the expected fluxes are extremely low

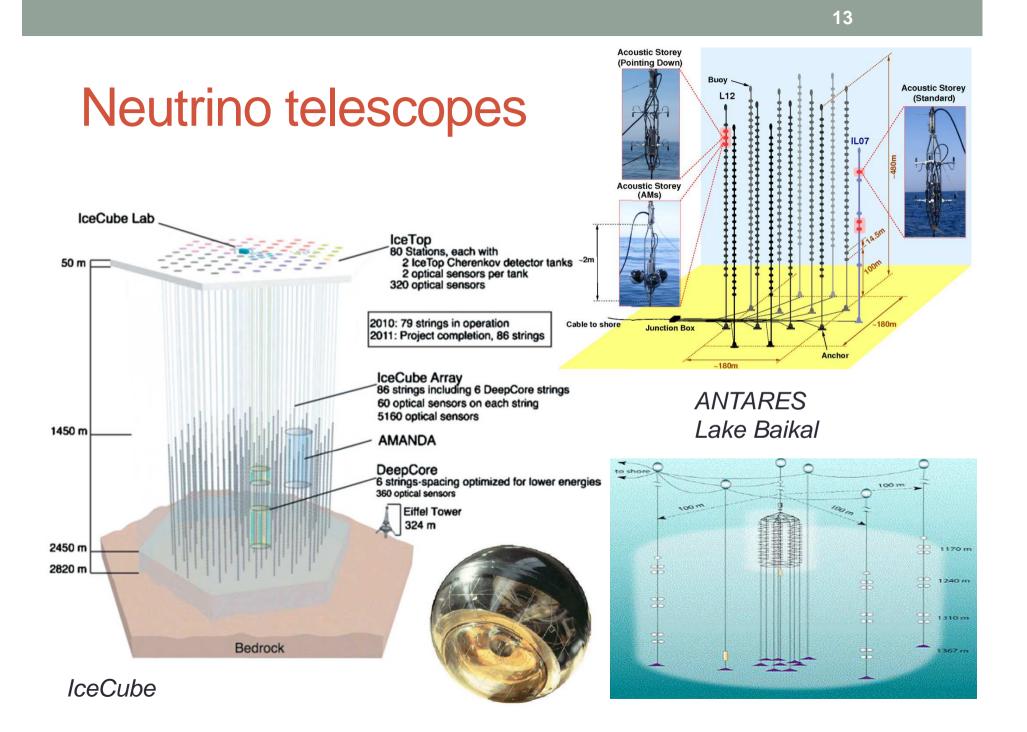



9

Neutrino interactions with matter

## Neutrino interactions with matter

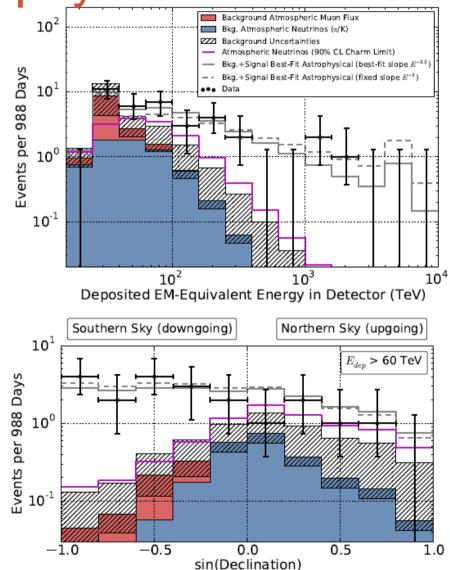
- Neutrinos are weakly interacting
  - this makes them difficult to detect
  - mean free path of  $10^{15}$  eV neutrino in water is  $l = 1/n\sigma \approx 17000$  km
- Generally  $\sigma \propto E$  for scattering off nuclei
  - scattering of  $\overline{v_e}$  off  $e^-$  can excite W resonance


Earth opaque to neutrinos above ~1000 TeV



Detection

## Detection of high-energy neutrinos


- Neutrino interacts by either W exchange or Z exchange
  - W exchange produces charged lepton, which you detect
  - Z exchange at sufficiently high momentum transfer may cause hadronic shower (break-up of struck nucleon) which you also detect
- Detection is normally by Cherenkov radiation in water (liquid water or ice)
  - for ultra-high-energy neutrinos use natural bodies of water/ice to get large effective volumes
    - Lake Baikal, Mediterranean Sea (ANTARES), South Pole (IceCube)
- Muons will leave track, electrons will shower
  - fairly good direction resolution (tenths of a degree) for  $v_{\mu}$ , but poor for  $v_e$ ;  $v_{\tau}$  OK if  $\tau$  decay is seen ("double bang" event)



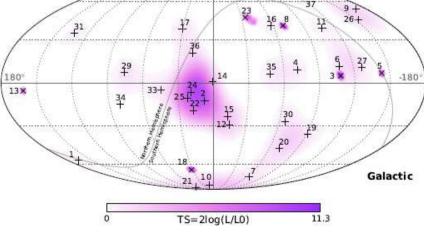
**Observations** 

### **Observation of astrophysical neutrinos**

- In 3 years of data taking IceCube has detected 37 events above 30 TeV deposited energy
  - background estimates are 8.4±4.2 CR muons and 6.6<sup>+5.9</sup> atmospheric neutrinos
  - the excess events are at higher energy than the background and are downgoing
    - high-energy neutrinos have high enough cross-section to be absorbed by the Earth
  - signal significance >5σ owing to difference in distribution



### **Observation of astrophysical neutrinos**


- Derived flux is consistent with Waxman-Bahcall bound
  - spectral index somewhat larger than naïve expectation of 2
    - but this is true of CR spectra too

Best-fit value No. of events Parameter Penetrating  $\mu$  flux  $1.73 \pm 0.40 \Phi_{\text{SIBYLL}+DPMJET}$  $30 \pm 7$  $280^{+28}_{-8}$  $0.97^{+0.10}_{-0.03} \Phi_{\rm HKKMS}$ Conventional  $\nu$  flux Prompt  $\nu$  flux  $< 1.52 \, \Phi_{\rm ERS} \ (90\% \, {\rm CL})$ < 23 $2.06^{+0.35}_{-0.26} \times 10^{-18}$ Astrophysical  $\Phi_0$  ${\rm GeV}^{-1}\,{\rm cm}^{-2}\,{\rm sr}^{-1}\,{\rm s}^{-1}$  $87^{+14}_{-10}$ Astrophysical  $\gamma$  $-2.46 \pm 0.12$ 

- No clear point sources
  - most significant cluster is near Galactic centre, but it is not statistically significant and is not confirmed by ANTARES
  - no correlation with Galactic plane
- Need more data!

23 × 16 8 + × 26+ 17 31

IceCube arXiv:1410.1749 (astro-ph.HE)

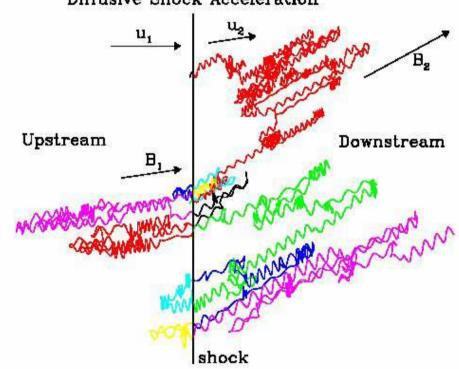


#### Summary

You should read section 2.5 of the notes.

You should know about

- π<sup>+</sup> decay
- the Waxman-Bahcall bound
- neutrino telescopes
- IceCube results


 High-energy astrophysical neutrinos are produced by π<sup>±</sup> decay

- the pions come from CR proton interactions
- As neutrinos interact extremely weakly, very large detectors are required
  - natural bodies of water/ice instrumented with PMTs to detect Cherenkov radiation from produced leptons or hadronic showers
- The main background is atmospheric neutrinos also produced by CR interactions
  - penetrating CR muons also contribute
- There is a signal (from IceCube) but as yet no identified point sources

## Next: acceleration mechanisms

- Fermi second-order
- diffusive shock acceleration
- acceleration by relativistic shocks
- acceleration by magnetic reconnection
- propagation through Galaxy

Notes chapter 3



Diffusive Shock Acceleration