HIGH ENERGY PARTICLE ASTROPHYSICS

Introduction

Susan Cartwright s.cartwright@shef.ac.uk

What is particle astrophysics?

- Particle astrophysics is the use of particle physics techniques (experimental or theoretical) to address astrophysical questions.
- Topics included:
 - early-universe cosmology
 - inflation (and alternatives), baryogenesis, dark energy
 - cosmic rays
 - γ-ray astronomy
 - high-energy neutrino astronomy
 - low-energy neutrino astronomy
 - dark matter (see PHY326/426)
- I will focus on high-energy particle astrophysics

These form a coherent field with a lot of common factors—"highenergy particle astrophysics"

HIGH ENERGY PARTICLE ASTROPHYSICS

Cosmic Rays

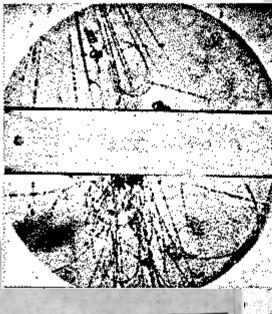
COSMIC RAYS

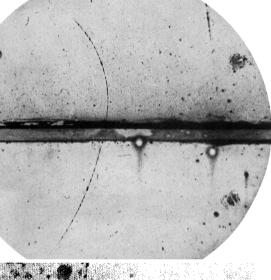
4

Discovery

Discovery of cosmic rays

- Cosmic rays were discovered in 1912 by Hess
 - he showed that the intensity of penetrating radiation increased with altitude
 - therefore not due to natural radioactivity in rocks
- Shown to be charged particles by Compton in 1932
 - flux observed to vary with latitude as expected for charged particles deflected by Earth's magnetic field
- East-west asymmetry observed in 1933




5

showed particles were mainly positively charged (protons & ions)

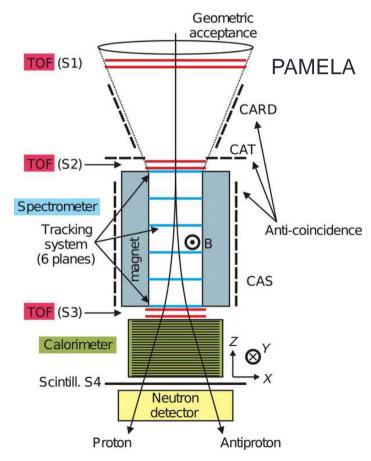
Early significance of cosmic rays

- Initial significance of cosmic rays mostly related to particle physics
 - e⁺, μ, π and strange particles all discovered in cosmic rays
 - later superseded by accelerators

6

COSMIC RAYS

7

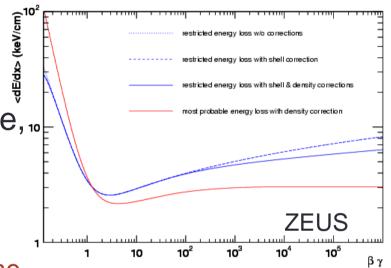

Detection

Detection of cosmic rays

- Cosmic rays are strongly interacting
 - primary cosmic rays shower high in the atmosphere
- Therefore, two approaches to detection:
 - detect primary particle at high altitude
 - requires balloon-borne or space-based experiment
 - detect shower products
 - can be ground-based, but loses information
- Typically, ground-based detection used for higher-energy cosmic rays
 - flux is too low for effective detection by experiments small enough to launch to high altitude

Detection of cosmic rays: primaries

- Ideally, would like to know *energy* (or momentum), *direction* and *identity* of particle
 - energy can be measured by calorimetry
 - momentum by a magnetic spectrometer
 - direction requires tracking information
 - spark chambers, wire chambers, silicon strip detectors, CCDs, ...
 - various techniques for particle identification
 - time of flight, d*E*/dx, threshold or ring-imaging Cherenkov
 - measure mass, but generally only for low-ish energies
 - charge measurement
 - measures Z, cannot separate isotopes



Energy/momentum and direction

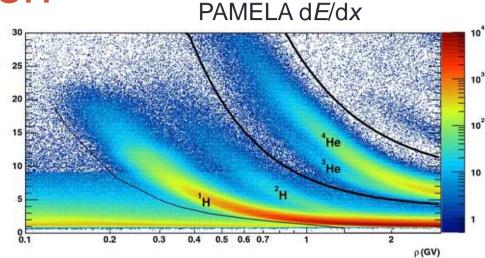
- Magnetic spectrometers measure momentum (actually, rigidity) from deflection of particle by magnetic field
 - this has the advantage that it measures charge *sign*, and thus distinguishes particles from antiparticles
- Calorimeters measure *energy* by causing particle to shower and then detecting deposited energy
 - this is usually more accurate than momentum above a certain threshold (depends on magnetic field) and measures photons (and other neutrals) as well as charged particles
- Other techniques include transition radiation (measures γ; convert to *E* by determining *m*)
 - calorimetry and transition radiation can both be used by nonmagnetic detectors

Particle identification

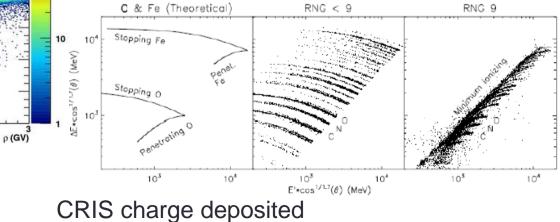
- dE/dx depends on βγ and therefore,
 for a known momentum, on the mass of the particle
 - the dependence is fairly complicated, and measurements do not generally use $\langle dE/dx \rangle$ itself but a truncated mean—therefore need to adjust formula
- TOF depends on β , hence on *m* if *p* known
- Cherenkov methods depend on β via cos $\theta = 1/n\beta$
- All these methods lose discrimination when particles become ultra-relativistic, so that m is negligible
- Determining particle charge via ionisation produced works up to higher momenta, but does not give isotopic info

Particle identification

Z=1 IM) XD/3 m 1. 0.8 0.6 0.4 10 0.2 2.5 p (GV) Z=2 m 1.2 10² 0.8 0.6 10

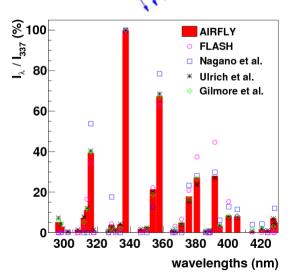

PAMELA time of flight

2.5


0.4

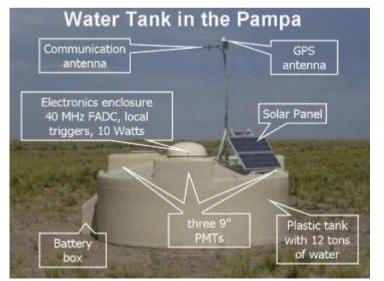
0.2

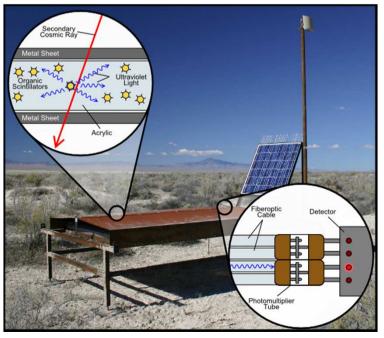
0



Note: *rigidity* R (or ρ) = cp/Ze is often used instead of momentum; it defines response of particle to magnetic field

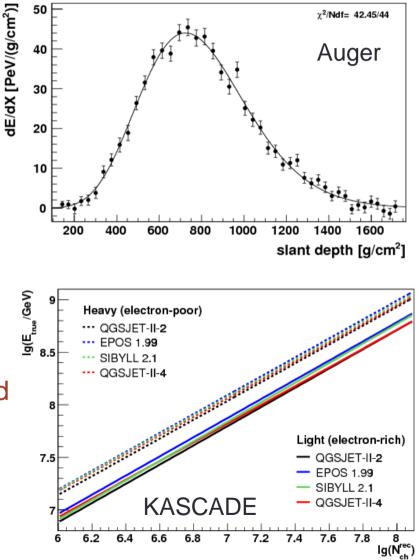
Detection of cosmic rays: showers

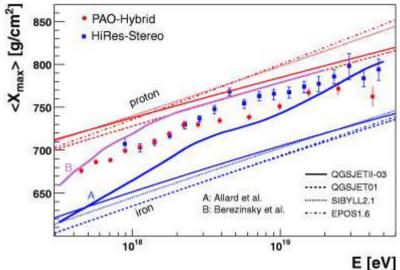

- Two possibilities: detect the shower in the air, or detect shower particles that reach the ground
 - Detection in air: either Cherenkov radiation or nitrogen
 fluorescence
 - Cherenkov radiation: detect particles travelling at speeds > c/n (~25 MeV for electrons in air)
 - very forward peaked: $\cos \theta = 1/n\beta \sim 1^{\circ}$ in air
 - blue light
 - Nitrogen fluorescence: detect near-UV radiation from excited nitrogen molecules
 - also mostly sensitive to electrons, but isotropic
 - Light is very faint in both cases: require clear skies and very dark nights
 - poor duty cycle, but large effective area

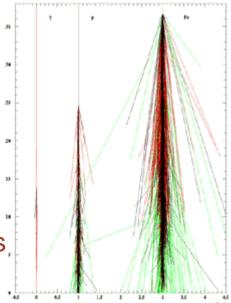


βct

Detection of cosmic rays: showers

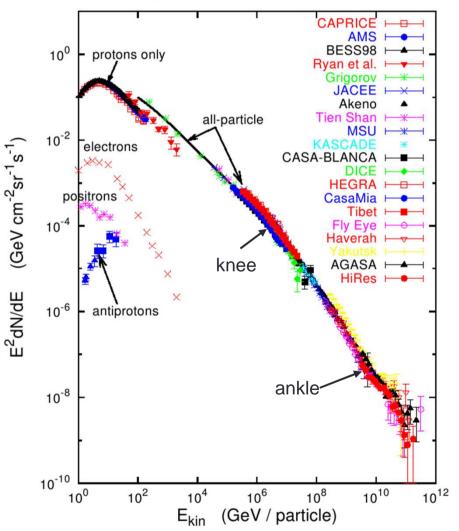

- Two possibilities: detect the shower in the air, or detect shower particles that reach the ground
 - Ground arrays: need large area coverage, so cheap, fairly autonomous array elements
 - technologies of choice: water Cherenkov or plastic scintillator
 - some arrays also have muon detectors (shielded from other particles)


Energy measurement


- Fluorescence detectors measure light yield and longitudinal shower profile
 - a fit to this can be used to deduce energy of primary
- Ground arrays measure transverse shower profile at ground level
 - charged particle multiplicity or charged particle density at specified distance from shower axis can be used to deduce energy

Particle identification

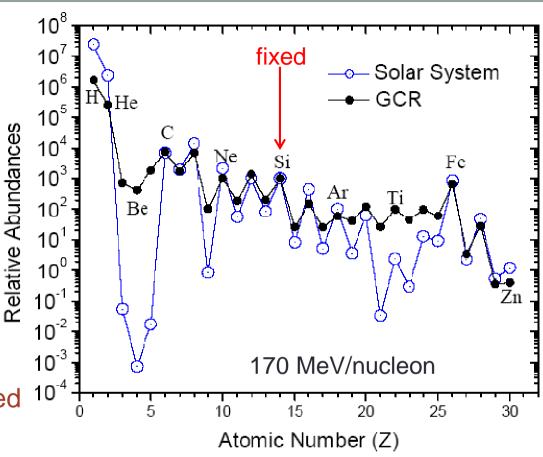
- Ground arrays cannot provide specific primary identification
 - "Heavy" and "light" primaries can be distinguished by the depth in the atmosphere at which they shower (X_{max})
 - Showers initiated by electrons/photons are narrower and contain only e[±] and γ
- At the highest energies there is some model dependence in this—no way to test models at these energies—and some disagreement between experiments
 - this is actually quite important as particle ID at highest energies has a bearing on possible sources.



COSMIC RAYS

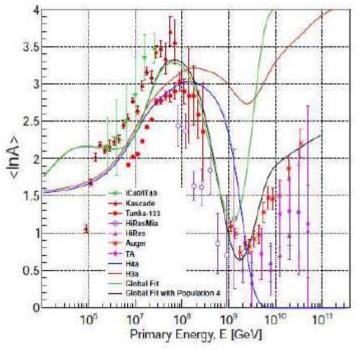
Properties

Properties of cosmic rays

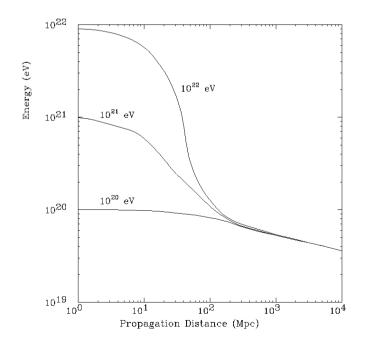

- Energy spectrum is close to a power law with spectral index ~2.7
 - turn-over at low energies is due to solar magnetic field
 - two noticeable slope changes: "knee" at ~10⁶ GeV and "ankle" at ~10⁹ GeV
 - possibly due to changeover of sources

Energies and rates of the cosmic-ray particles

Composition


- Relative deficit of H and He (more easily deflected)
- Large excess of Li/Be/B and elements just below iron peak
 - these nuclei are produced in CRs by *spallation*

- also accounts for smaller odd/even modulation
- Note that detailed composition information is only available for fairly low-energy CRs


High energy composition

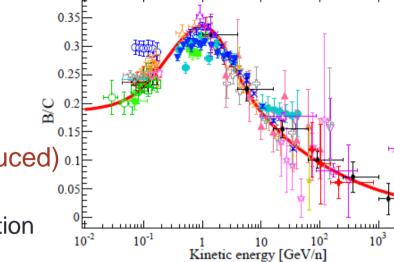
- Rigidity R = cp/Ze
 - particles of same rigidity behave in same way in Galactic magnetic field and in source magnetic field
 - if source can only confine particles up to rigidity R_{max}, then maximum particle energy < Z: composition will skew towards heavier species at cut-off
- Evidence for source change above knee, and perhaps also above ankle
 - latter is driven mainly by data from Auger—not much evidence of heavier composition from TA or HiRes

High energy composition: GZK

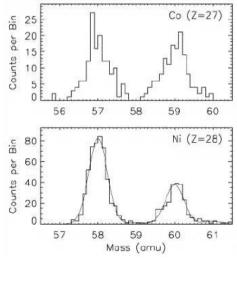
- An unavoidable cut-off at high energies arises from the interaction $p + \gamma \rightarrow \Delta^+ \rightarrow p + \pi^0(n + \pi^+)$
 - at energies above ~5×10¹⁹ eV this reaction can take place with a CMB photon
 - this is unavoidable as these photons are everywhere
 - result is to reduce proton energy by ~3% owing to the production of the pion mass
 - repeated until proton energy drops below threshold
 - limits range of protons with E > 5×10¹⁹ eV to ~100 Mpc (~Coma cluster)
- It is *not* clear if observed cut-off at about this energy is GZK or not
 - if associated with shift to heavy nuclei, could be source cut-off instead

Isotopic composition

- Key issues:
 - ratio of secondary (spallation-produced) 0.1 to primary nuclei
 - provides information about propagation of CRs in Galaxy
 - nuclei which are stable to β^+ decay (X \rightarrow X' + e⁺ + v_e) but unstable to electron capture (X + e⁻ \rightarrow X' + v_e)

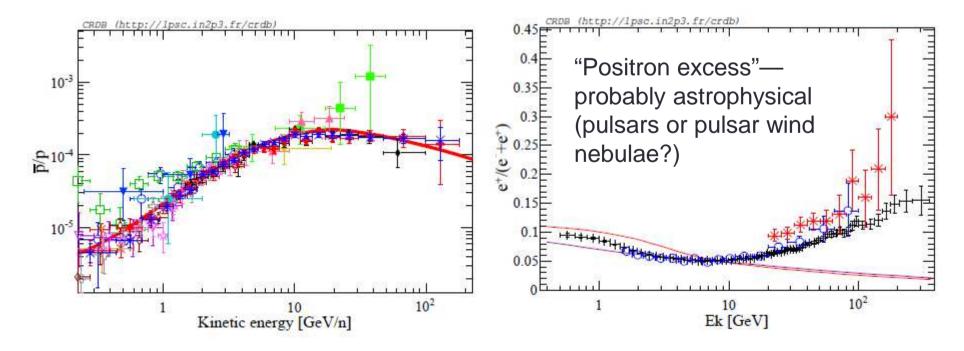

0.4

0.1

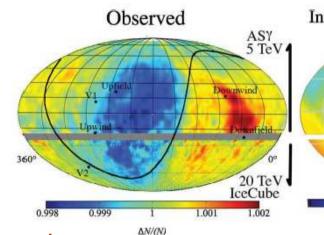

500

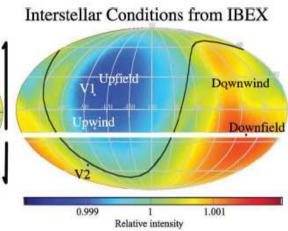
E/U (MeV/tuc)

- as long as such nuclei are *fully ionised* they are *completely stable*
- absence of such isotopes among primary nuclei suggests that material that is accelerated is initially cold
- (these isotopes *are* observed among secondary nuclei)

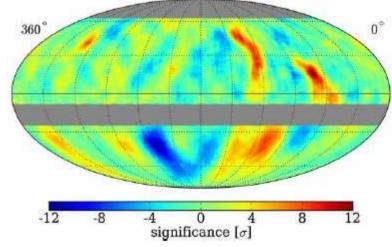


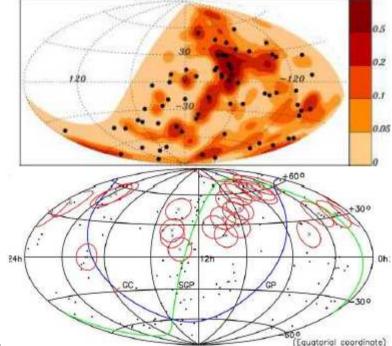
(http://lpsc.in2p3.fr/crdb


Antiparticles


- Antiprotons and—especially—positrons can be produced as secondaries by energetic interactions
 - also possibly by dark-matter annihilation
- Antinuclei would imply existence of antistars

Directional information


 Cosmic ray directions are scrambled by Galactic magnetic field


- small-amplitude large-scale anisotropies are well accounted for by local magnetic fields
- smaller-scale anisotropies may be due to source distribution or magnetic field variations
 - in fact, level of anisotropy is much *lower* than theoretically expected

Milagro + IceCube TeV Cosmic Ray Data (10" Smoothing)

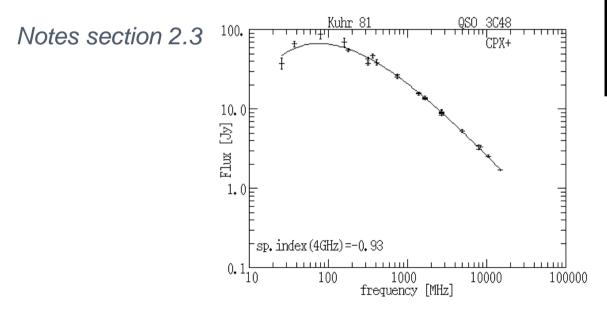
Directional information: high energies

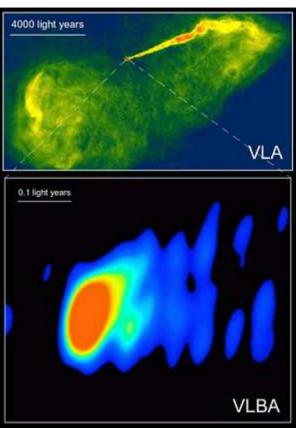
- At very high energies directions should not be so severely affected—might find correlations with sources
 - results so far not very impressive
 - Auger see weak correlation with nearby AGN, but more data have weakened, not strengthened, result
 - Auger also see slight increase in flux in direction of Cen A; both these are 2σ

- TA sees "hot spot" near 6^h RA, 60° Dec (3.6σ)—but this is broad and not obviously correlated with a potential source
- if high-energy CRs are heavy ions as suggested by Auger data, this is easier to understand, as they are deflected more for same p

Summary

You should read section 2.2 of the notes.


You should know about


- the discovery of cosmic rays
- detection techniques
- basic properties (energy spectrum, composition, anisotropies)

- Cosmic rays consist mostly of protons and heavy ions
 - primary cosmic rays are detected by balloonborne and space-based platforms
 - products of air showers are detected by ground-based experiments
- Detectors aim to measure energy, direction and particle ID
 - energy by magnetic spectrometers, calorimeters, transition radiation (primaries) or by shower profile, light yield and particle counting (showers)
- Observed properties:
 - energy spectrum is a power law with spectral index ~2.7
 - elemental composition shows evidence for spallation
 - isotopic composition implies accelerated material is initially cool
 - directions are broadly isotropic, no direct evidence for particular sources

Next: radio emission

- radiation from an accelerated charge
- bremsstrahlung
- synchrotron radiation

