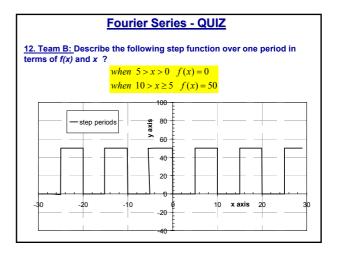
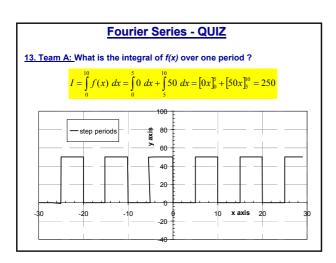
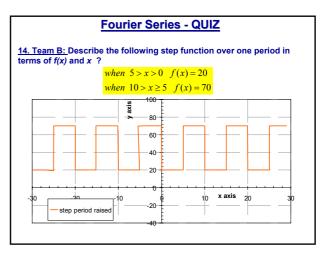
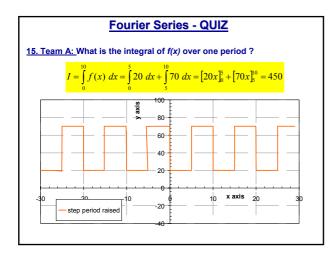


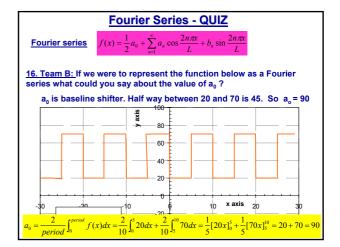
Fourier Series - QUIZ							
<u>11. Team A:</u> What is $I = \int_{-10}^{10} f(x) dx$?							
$I = \int_{-10}^{10} f(x) dx$		$\int_{0}^{10} 50 dx = [0x]$	$\int_{-10}^{0} + [50x]_{0}^{10} =$	= 500			
v axis	100 -						
└──	-80 -						
step	-60						
			'				
		x axis					
-302010		10	20	30			
	40						

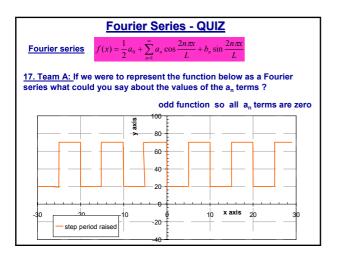


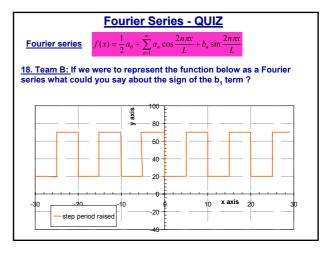


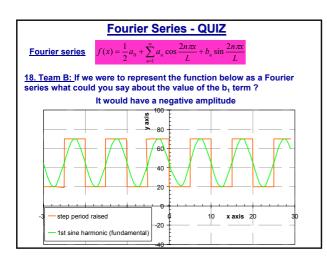


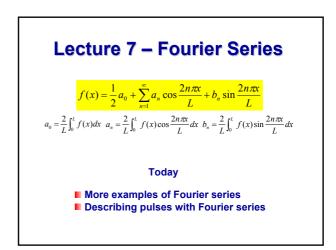


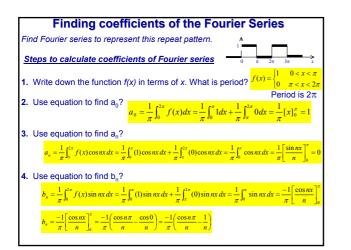


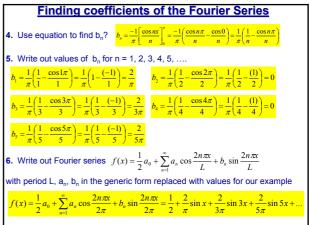


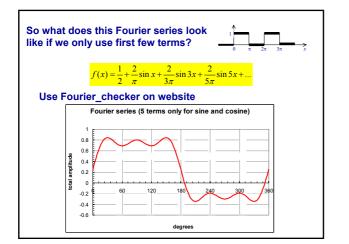


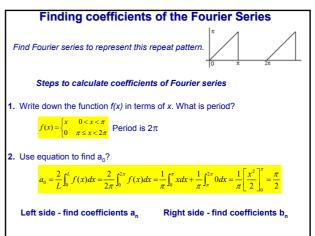


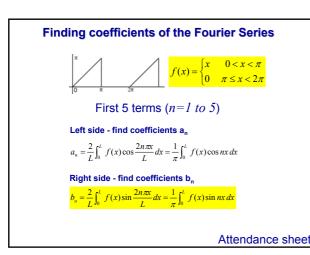


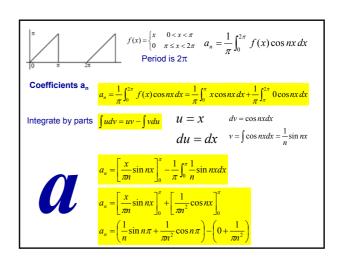


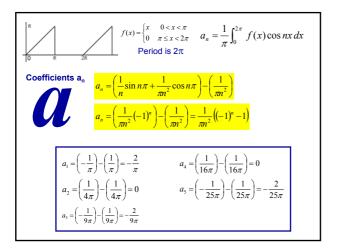


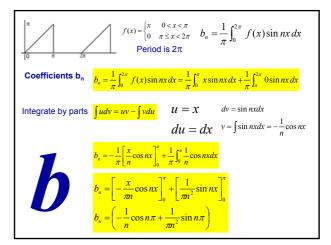


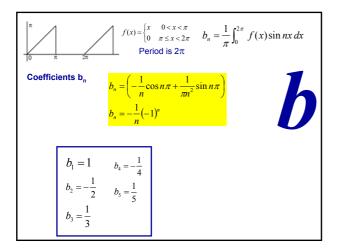


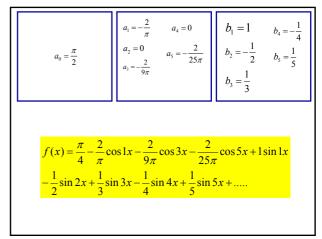


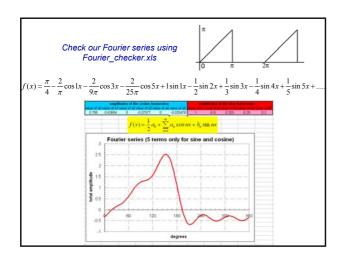


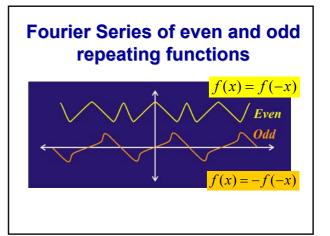


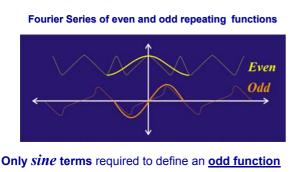








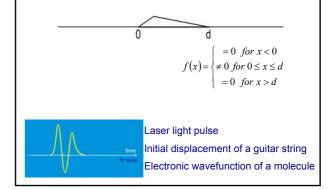


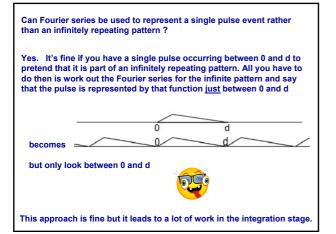


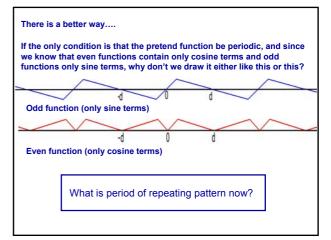
Only *sine* terms required to define an <u>odd function</u> Only *cosine* terms required to define an <u>even function</u>

Only an even function can have an offset.

Fourier Series applied to pulses

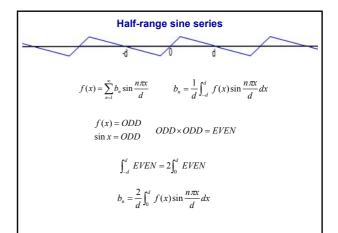


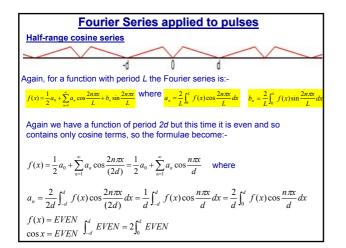


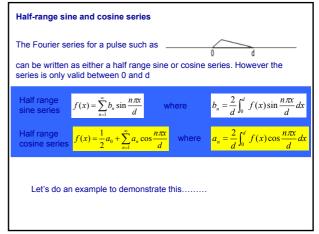


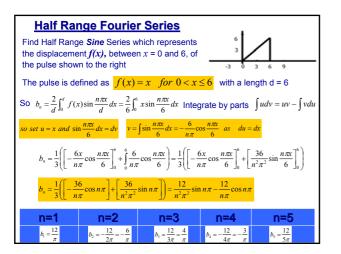
Half-range sine series – where
$$L=2d$$

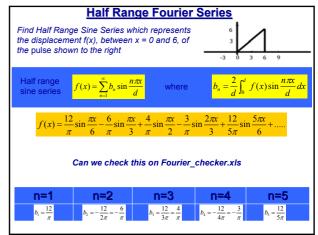
We saw earlier that for a function with period *L* the Fourier series is:-
 $f(x) = \frac{1}{2}a_{u} + \sum_{n=1}^{\infty} a_{n} \cos \frac{2n\pi x}{L} + b_{n} \sin \frac{2n\pi x}{L}$ where $a_{u} = \frac{2}{L} \int_{a}^{L} f(x) \cos \frac{2n\pi x}{L} dx$ $b_{u} = \frac{2}{L} \int_{a}^{L} f(x) \sin \frac{2n\pi x}{L} dx$
In the half range case we have a function of period 2d which is odd and so
contains only sine terms, so the formulae become:-
 $f(x) = \sum_{n=1}^{\infty} b_{n} \sin \frac{2n\pi x}{(2d)} = \sum_{n=1}^{\infty} b_{n} \sin \frac{n\pi x}{d}$ where
 $b_{n} = \frac{2}{2d} \int_{-d}^{d} f(x) \sin \frac{2n\pi x}{(2d)} dx = \frac{1}{d} \int_{-d}^{d} f(x) \sin \frac{n\pi x}{d} dx$
Remember, this is all to simplify the Fourier series. We're still only allowed
to look at the function between x = 0 and x = d

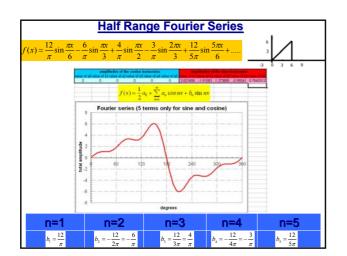


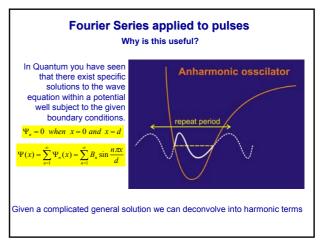




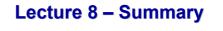




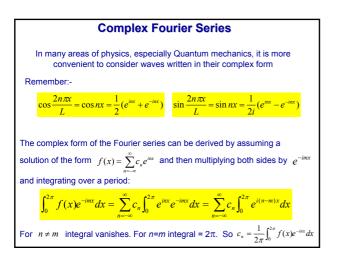


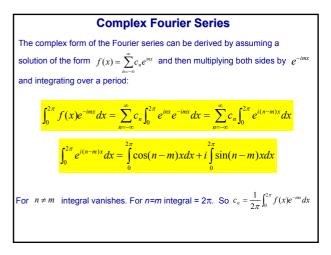






Practice questions – online at <u>http://www.hep.shef.ac.uk/phy226/unit1/phy226T1to4.htm</u> Complex Fourier series Parseval's theorum Revision & Practice $f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{2n\pi x}{L} + b_n \sin \frac{2n\pi x}{L}$ $a_0 = \frac{2}{L} \int_0^L f(x) dx \quad a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{2n\pi x}{L} dx \quad b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{2n\pi x}{L} dx$





Complex Fourier Series

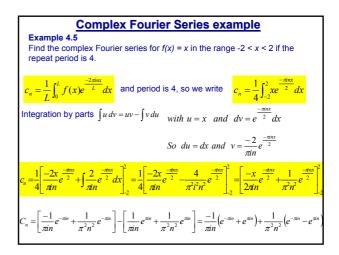
Therefore for a period of 2π the complex Fourier series is given as:-

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx} \quad \text{where} \quad c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

The more general expression for a function f(x) with **period** L can be expressed as:-

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{\frac{2\pi i n x}{L}} \text{ where } c_n = \frac{1}{L} \int_0^L f(x) e^{-\frac{2\pi i n x}{L}} dx$$

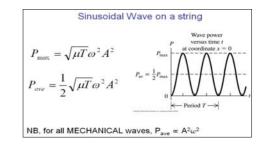
Let's try an example from the notes

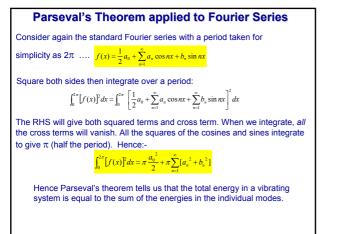


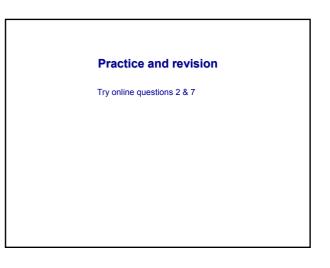
$$\frac{\text{Complex Fourier Series example}}{\text{Example 6}}$$
Find the complex Fourier series for $f(x) = x$ in the range $-2 < x < 2$ if the repeat period is 4.
Since $\frac{-1}{i} \times \frac{i}{i} = i$ then $C_n = \frac{i}{m} (e^{-\pi i n} + e^{\pi i n}) + \frac{1}{\pi^2 n^2} (e^{-\pi i n} - e^{\pi i n})$
We want to find actual values for C_n so it would be helpful to convert expression for C_n into sine and cosine terms using the standard expressions:-
 $\cos n\pi = \frac{1}{2} (e^{-\pi i n} + e^{\pi i n})$ $\sin n\pi = \frac{-1}{2i} (e^{-\pi i n} - e^{\pi i n})$
So we can write...
 $C_n = \frac{2i}{\pi n} \cos n\pi - \frac{2i}{\pi^2 n^2} \sin n\pi = \frac{2i}{\pi n} \cos n\pi$ so $C_n = \frac{2i}{\pi n} \cos n\pi = \frac{2i}{\pi n} (-1)^n$ and since
 $f(x) = \sum_{n=-\infty}^{\infty} c_n \frac{e^{2\pi i n}}{n}$ so $f(x) = \sum_{n=-\infty}^{\infty} \frac{2i}{\pi n} (-1)^n e^{\frac{\pi i n}{2}}$

Parseval's Theorem applied to Fourier Series

The energy in a vibrating string or an electrical signal is proportional to the square of the amplitude of the wave







Fourier Series in movies!!!!							
In music if the fundamental frequency of a note is 100 Hz							
Then the harmonics are at 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz							
But the octaves are at 200 Hz, 400 Hz, 800 Hz, 1600 Hz, 3200 Hz							
	to explain the Fou wed you understo		n alien you'd pro	bably pick			
So as a greeting why not try G , A , F , F _{octave lower} , C							
392Hz	440Hz	349Hz	174Hz	261Hz			
Why are these notes specialWe'll take the 1^{st} harmonic as F_{bottom} =21.8Hz							
18 th harmonic	20 th harmonic	4 th octave (16 th harmonic)	8 th harmonic	12 th harmonic			
$f(t)_{total} = B_{18} \sin \theta$	$h(2\pi f_{18}t) + B_{20}\sin(2\pi f_{18}t)$	$\pi f_{20}t) + B_{16}\sin(2t)$	$\pi f_{16}t) + B_8 \sin(2\pi f_8)$	$(t) + B_{12}\sin(2\pi f_{12}t)$			
http:/	//uk.youtube	.com/watcl	<u>h?v=tUcOa(</u>	GawIW0			