1st problem class – this week To be handed in next week

Also remember the online problems http://www.hep.shef.ac.uk/phy226

Check the fire exits – There may well be a fire drill today

Topic 3

Ordinary Differential equations

Purpose of lecture 3:

- Solve 1st order ODE
- Solve 2nd order homogeneous ODE

means solutions are functions of one variable x(t)

Homogeneous means that f(t) = 0 $a\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = f(t)$

Defining terms II

The General solution is the broadest most longwinded version of the solution

$$N(t) = Ae^{mt}$$

The Particular solution is the result of applying boundary conditions to the general solution

$$N(t) = 5e^{-2t}$$

Today we solve 1st order and 2nd order homogeneous ordinary differential equations...

1st order homogeneous ODE e.g. radioactive decay $\frac{dN(t)}{dt} = -\lambda N(t)$ $\int \frac{dN}{N} = -\lambda \int dt$ **1**st method: Separation of variables gives $\ln N = -\lambda t + c$ $N = e^{-\lambda t + c} = e^{-\lambda t} e^{c} = A e^{-\lambda t}$

1 st order homogeneous ODE		
e.g. radioactive decay $\frac{dN(t)}{dt} = -\lambda N(t)$		
2nd method: Trial solution Guess trial solution looks like $N(t) = Ae^{mt}$		
Substitute the trial solution into the ODE $\frac{dN(t)}{dt} = Ame^{mt} = mN(t)$		
dt so write Comparison shows that $m = -\lambda$ $N(t) = Ae^{-\lambda t}$		

1st order homogeneous ODE

The general solution $N(t) = Ae^{-\lambda t}$

The particular solution is found by applying boundary conditions e.g. At t=0 there are 100 nuclei; but at t=20 there were only 50 left

So we can write
$$N(0)$$
 = 100 = $Ae^{-\lambda 0}$ so 100 = A

The other boundary conditions tell us that $N(20) = 50 = 100e^{-20\lambda}$

So we can write $\frac{50}{100} = e^{-20\lambda}$ so $\ln(0.5) = -20\lambda$ so $\lambda = 0.035$

The particular solution is therefore $N(t) = 100e^{-0.035t}$

http://www.youtube.com/watch?v=gEwzDydciWc

Bacterial growth
Boundary conditions
t = 0 s N = 4
t = 4 s N = 80
What does the general solution look like?
Find the particular solution

Bacterial growth

Boundary conditions

t = 0 s N = 4

t = 4 s N = 80

<u>Trial solution</u> is a powerful method of solving differential equations 2nd order homogeneous ODE

Solving
$$a \frac{d^2 x}{dt^2} + b \frac{dx}{dt} + cx = 0$$

Step 1: Let the trial solution be $x = e^{mt}$
Substitute this back into $a \frac{d^2 x}{dt^2} + b \frac{dx}{dt} + cx = 0$
To get the **auxiliary equation** $am^2 + bm + c = 0$
Step 2: Solve the auxiliary equation to get m_1 and m_2
Step 3: General solution is $x = Ae^{m_t} + Be^{m_2t}$
Step 4: The **Particular solution** is found by applying boundary conditions

2nd order homogeneous ODE $a\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = 0$ Step 1: Let the trial solution be $x = e^{mt}$ Now substitute this back into the ODE remembering that $\frac{dx}{dt} = me^{mt} = mx$ and $\frac{d^2x}{dt^2} = m^2e^{mt} = m^2x$ This is now called the auxiliary equation $am^2 + bm + c = 0$ Step 2: Solve the auxiliary equation for m_1 and m_2 Step 3: General solution is $x = Ae^{m_1t} + Be^{m_2t}$ or $x = e^{mt}(A+Bt)$ if $m_1=m_2$ For complex roots $m = \alpha \pm i\beta$ solution is $x = Ae^{(\alpha+i\beta)t} + Be^{(\alpha-i\beta)t}$ which is same as $x = e^{\alpha t}(Ae^{i\beta t} + Be^{-i\beta t})$ or $x = e^{\alpha t}(C\sin\beta t + D\cos\beta t) = Ee^{\alpha t}[\cos\beta t + \phi]$ Step 4: Particular solution is found now by applying boundary conditions

2 nd order homogeneous ODE
Example 3.2: Linear harmonic oscillator with boundary conditions that it has velocity V when time t=0 at x=0 $\frac{d^2x(t)}{dt^2} + \omega^2 x(t) = 0$
<u>Step 1:</u> Let the trial solution be $x = e^{mt}$ So $\frac{dx}{dt} = me^{mt} = mx$ and $\frac{d^2x}{dt^2} = m^2e^{mt} = m^2x$
<u>Step 2:</u> The auxiliary is then $m^2 = -\omega^2$ and so roots are $m = \pm i\omega$
<u>Step 3</u> : General solution for complex $m = \alpha \pm i\beta$ is $x = e^{\alpha}(C\sin\beta t + D\cos\beta t)$
where $\alpha = 0$ and $\beta = \omega$ so $x = C \sin \omega t + D \cos \omega t$
Step 4: When x = 0 t = 0 so $0 = C\sin\omega 0 + D\cos\omega 0$ so $0 = 0 + D$
From general solution we find $\frac{dx}{dt} = C\omega\cos\omega t - D\omega\sin\omega t$ Conditions state when
t = 0 and x = 0, velocity is V, so $V = C\omega \cos \omega 0 - D\omega \sin \omega 0 = C\omega$ and so $C = \frac{V}{\omega}$
Particular solution is therefore $x = \frac{V}{\sin \omega t + 0} \cos \omega t = \frac{V}{\sin \omega t}$

2 nd order homogeneous ODE				
Example 3.3 Unstable equilibrium, with boundary conditions that it has velocity 0 at time t = 0 and x(0) = L $\frac{d^2}{dt^2}x(t) - \alpha^2 x(t) = 0$				
Step 1: Let the trial solution be $x = e^{mt}$ So $\frac{dx}{dt} = me^{mt} = mx$ and $\frac{d^2x}{dt^2} = m^2e^{mt} = m^2x$				
<u>Step 2:</u> The auxiliary is then $m^2 x = \alpha^2 x$ and so roots are $m = \pm \alpha$				
<u>Step 3</u> : General solution for real roots $m = \pm \alpha$ is $x(t) = Ae^{\alpha t} + Be^{-\alpha t}$				
Step 4: When t = 0 x = L so $x(0) = Ae^{\alpha 0} + Be^{-\alpha 0} = L$ so $L = A + B$				
From general solution we find $\frac{dx}{dt} = A\alpha e^{\alpha t} - B\alpha e^{-\alpha t}$ Conditions state when				
t = 0 and x = L, velocity is 0, so $\frac{dx}{dt} = 0 = A\alpha e^{\alpha 0} - B\alpha e^{-\alpha 0} = A\alpha - B\alpha$ so $B = A$				
Particular solution is therefore $x(t) = \frac{L}{2}e^{\alpha t} + \frac{L}{2}e^{-\alpha t} = L\cosh(\alpha t)$				

More examples
Find general solutions to
$$\frac{d^2y}{dx^2} = 4y$$

$$\frac{d^2y}{dx} + 2\frac{dy}{dx} - 2y = 0$$

$$\frac{d^2y}{dx} - 2\frac{dy}{dx} + 2y = 0$$
And a particular solution to
$$3\frac{d^2y}{dx} - 2\frac{dy}{dx} + y = 0$$
where $y(0) = 6$ and $\frac{dy}{dx}\Big|_{x=0} = 0$

Lecture 3 summary

For equations like this
$$a \frac{d^2 x}{dt^2} + b \frac{dx}{dt} + cx = 0$$

Use a trial solution $x = e^{mt}$

Solve the auxiliary equation and write down the general solution $x = Ae^{m_1t} + Be^{m_2t}$

2 nd order homogeneous ODE - revision
Solving $a\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = 0$
<u>Step 1</u> : Let the trial solution be $x = e^{mt}$ Now substitute this back into the
ODE remembering that $\frac{dx}{dt} = me^{mt} = mx$ and $\frac{d^2x}{dt^2} = m^2e^{mt} = m^2x$
This is now called the auxiliary equation $am^2 + bm + c = 0$
<u>Step 2</u> : Solve the auxiliary equation for m_1 and m_2
<u>Step 3</u> : General solution is $x = Ae^{m_1t} + Be^{m_2t}$ or $x = e^{mt}(A+Bt)$ if $m_1=m_2$
For complex roots $m = \alpha \pm i\beta$ solution is $x = Ae^{(\alpha + i\beta)t} + Be^{(\alpha - i\beta)t}$ which is
same as $x = e^{\alpha t} (Ae^{i\beta t} + Be^{-i\beta t})$ or $x = e^{\alpha t} (C\sin\beta t + D\cos\beta t) = Ee^{\alpha t} [\cos\beta t + \phi]$
Step 4: Particular solution is found now by applying boundary conditions

2 nd order homogeneous ODE
Solve $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 4x = 0$ Boundary conditions x=4, velocity=0 when t=0
<u>Step 1</u> : Trial solution is $x = e^{mt}$ so auxiliary equation $m^2 - 4m + 4 = 0$
<u>Step 2</u> : Solving the auxiliary equation gives $m_1 = m_2 = 2$
<u>Step 3</u> : General solution is $x = e^{mt}(A+Bt)$ if $m_1=m_2$ giving $x = e^{2t}(A+Bt)$
Step 4: Particular solution is found now by applying boundary conditions
When t = 0, x = 4 so $4 = e^0(A + B0)$ and so $4 = A$
Since $x = e^{2t}(A+Bt) = Ae^{2t} + Bte^{2t}$ velocity = $\frac{dx}{dt} = 2Ae^{2t} + Be^{2t} + 2Bte^{2t}$
Boundary conditions give $0 = 2Ae^0 + Be^0 + 2B0e^0 = 2A + B$ so $B = -2A = -8$
Full solution is therefore $x = e^{2t}(4-8t)$

us equation and call

	Inhomogeneous ordinary differential equations		
2 nd order inhomogenous ODE	$p\frac{d^2x}{dt^2} + q\frac{dx}{dt} + rx = f(t)$ Step 1: Find the general solution to the related homogeneous equation and		
Introduction	it the complementary solution $x_c(t)$		
Hopefully these equations from PHY102 Waves & Quanta are familiar to you	<u>Step 2</u> : Find the particular solution $x_p(t)$ of the equation by substituting an		
Forced oscillation without damping:	appropriate trial solution into the <u>full</u> original inhomogeneous ODE.		
$m\frac{d^2}{dt^2}x(t) + kx(t) = H_0 \cos \omega_D t$	e.g. If $f(t) = t^2$ try $x_p(t) = at^2 + bt + c$ If $f(t) = 5e^{3t}$ try $x_p(t) = ae^{3t}$ If $f(t) = 5e^{j\omega t}$ try $x_p(t) = ae^{j\omega t}$ If $f(t) = sin2t$ try $x_p(t) = a(cos2t) + b(sin2t)$ If $f(t) = cos at$ try $x_p(t) = Re[ae^{i\omega t}]$ see later for explanation		
Forced Oscillation with damping:	If $f(t) = \sin \omega t$ try $x_p(t) = Im[ae^{i\omega t}]$		
$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = H_0 \cos\omega_D t$	If your trial solution has the correct form, substituting it into the differential equation will yield the values of the constants <i>a</i> , <i>b</i> , <i>c</i> , etc. <u>Step 3</u> : The complete general solution is then $x(t) = x_c(t) + x_p(t)$.		
e.g. Mechanical oscillators, LCR circuits, optics and lasers, nuclear physics,	Step 4: Apply boundary conditions to find the values of the constants		

What is the form of the particular solution for the following functions:

$$f(t) = 3t^{2}$$

$$f(t) = 3\sin 4t$$

$$f(t) = 3e^{4it}$$

$$f(t) = F\cos\omega t$$

Particular solutions:

$$f(t) = 3t^2 \quad x_c(t) = at^2 + bt + c$$

 $f(t) = 3\sin 4t \quad x_c(t) = a\sin 4t + b\cos 4t$

$$f(t) = 3e^{4it} x_c(t) = ae^{4it}$$

 $f(t) = F \cos \omega t \ x_c(t) = a \cos \omega t + b \sin \omega t$

Inhomogeneous ordinary differential equations				
Example 4: Undamped driven oscillator At rest when t = 0 and x = L		$\frac{d^2}{dt^2}x(t) + \omega_0^2 x(t) = F \cos \omega t$		
Step 4: Apply bounda	ary conditions to fin	d the values of the const	ants A and B	
for the full solution	$x(t) = A\cos\omega_0 t + B$	$\sin \omega_0 t + \frac{F}{\omega_0^2 - \omega^2} \cos \omega t$		
When t = 0, x = L so	$L(0) = A\cos\omega_0 0 + h$	$B\sin\omega_0 0 + \frac{F}{\omega_0^2 - \omega^2}\cos\omega 0$	$=A+\frac{F}{\omega_0^2-\omega^2}$	
	$A = L - \frac{F}{\omega_0^2 - c}$	$\overline{v^2}$		

Lecture 5 – Inhomogeneous ODE $p\frac{d^{2}x}{dt^{2}} + q\frac{dx}{dt} + rx = f(t)$

Driven damped harmonic motion

4x4 with no shock absorbers

http://uk.youtube.com/watch?v=AKcTA5j6K80&feature=related

Bose suspension http://uk.youtube.com/watch?v=eSi6J-QK1lw

Finding a partial solution to inhomogeneous ODE using complex form Sometimes it's easier to use complex numbers rather than messy algebra We can write $Fe^{i\omega t} = F \cos \omega t + iF \sin \omega t$ and we can also say $\operatorname{Re}\left\{Fe^{i\omega t}\right\} = F \cos \omega t$ and $\operatorname{Im}\left\{Fe^{i\omega t}\right\} = F \sin \omega t$

Find partial solution to example of inhomoODE using complex form				
Complementary solution is unchanged so $\frac{d^2x(t)}{dt^2} - 4x(t) = 5\sin 8t$ Is it faster this way?				
Step 4 : Imagine equation we want to solve is of the form $\frac{d^2 X}{dt^2} - 4X = 5e^{i8t}$ Im $\left\{5e^{i8t}\right\} = 5\sin 8t$ $5e^{i8t} = 5\cos 8t + 5i\sin 8t$				
So we pick a trial solution $X_p(t) = Ae^{i8t} \frac{dX}{dt} = i8A\omega e^{i8t} \frac{d^2X}{dt^2} = -64Ae^{i8t}$				
Substituting into FULL equation gives $-64Ae^{i8t} - 4Ae^{i8t} = -68Ae^{i8t} = 5e^{i8t}$				
Cancelling gives $A = -\frac{5}{68}$ and $X_p(t) = -\frac{5}{68}e^{8tt}$				
Solution is $x_p(t) = \operatorname{Im}\left\{X_p(t)\right\} = \operatorname{Im}\left\{-\frac{5}{68}e^{8it}\right\} = \operatorname{Im}\left\{-\frac{5}{68}(\cos 8t + i\sin 8t)\right\} = -\frac{5}{68}\sin 8t$				

