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PHY250  - Mathematical Methods for Physics and Astronomy  
 
The Mathematical Methods component of PHY250 is taught in three serial blocks  

 

Block one (8 lectures) 
Dr Alastair Buckley, E49, alastair.buckley@sheffield.ac.uk 

1. Revision of algebraic methods 
2. Complex numbers and functions 
3. Ordinary differential equations 
4. Fourier series    
 

Block two 
Prof. David Mowbray, E14, d.mowbray@sheffield.ac.uk 

Fourier integrals & convolution theorem 
 

Block three 
Dr Vitaly Kudryavtsev, F9b, v.kudryavtsev@sheffield.ac.uk 

Partial differential equations 
 
 
Reference material 
Lectures will impart some knowledge of mathematics but skill can only be obtained by 
practising. Examples will be given in each lecture but a massive collection of further worked 
online problems, along with electronic copies of the notes and lecture slides, can be found 
at http://www.hep.shef.ac.uk/phy226.htm 
 

The notes are pretty complete and can also be found online so there are no compulsory 
textbooks. Jordan & Smith covers approximately the first half of the course and is 
recommended. Two other excellent textbooks both of which cover most of the course are: 

Mary L. Boas – Mathematical Methods in the Physical Sciences (Wiley)  
Erwin Kreyszig – Advanced Engineering Mathematics (Academic Press) 

 

The Physics and Astronomy Formula and Data sheet is also a really useful point of 
reference. You should always have a copy when doing problems or reading the notes. 
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Content of Lectures 1-8 
 

Topic 1 Brief revision of algebra and functions (lecture 1) 
 

1.1 Multiplying brackets      page 4 
1.2 Binomial series      page 4 
1.3 Taylor series       page 5 
1.4 Why use series approximations    page 7 
1.5 Trigonometric and Hyperbolic functions   page 7 
1.6 Exponentials       page 8 
1.7 Logarithms       page 9 

 

Online Problems for topic 1     page 9 
 
Topic 2 Revision of complex numbers (lecture 2) 
 

2.1 Argand diagram: arithmetic operations   page 10 
2.2 Polar form: geometric operations    page 11 
2.3 Powers and roots      page 13 
2.4 Complex exponentials and trig functions   page 14 
2.5 Differentiation      page 14 

 

Online Problems for topic 2     page 15 
 
Topic 3 Ordinary differential equations (ODEs) (lectures 3-5) 
 

3.1 First order ODEs      page 16 
3.2 Second order ODEs      page 18 
3.3 Homogenous 2nd order equations     page 21 
3.4 Inhomogeneous 2nd order equations   page 23 

 

Online Problems for topic 3     page 28 
 
Topic 4   Fourier series (Lectures 5-8) 
 

4.1 Introduction to Fourier series    page 29 
4.2 Why are they useful?     page 30 
4.3 Towards finding the Fourier coefficients   page 31 
4.4 Average value of a function     page 32 
4.5 Orthogonality      page 32 
4.6 Fourier coefficients – derivation    page 33 
4.7 Summary of results      page 34 
4.8 Examples       page 35 
4.9 Even and Odd functions     page 38 
4.10 Half range series      page 40 
4.11 Complex series      page 42 
4.12 Parseval’s Theorem      page 44 
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Topic 1: Revision of Algebra 
 
1.1 Multiplying Brackets 
 
All terms are included,  e.g.  

)2()2()2)(()( 2222223 yxyxyyxyxxyxyxyxyx +++++=+++=+  
Also 2 2( )( )x a x a x a+ − = −      
 
You can check these by choosing a simple value for x and y in the above expression.  
 
1.2 Binomial Series (See exam data sheet)   
 

2 3( 1) ( 1)( 2)(1 ) 1
2! 3!

n nnn n n n nx nx x x x
k

 − − −
+ = + + + + + + 

 
K K,  where 

( )
!

! !
n n
k n k k

 
=  − 

. 

 
 
• When n is a positive integer we have a finite series: i.e. the series terminates. 
 
• When n is negative or non-integer, the series does not terminate. 
 
• The series converges for all |x| <1 since x to any power will be smaller than x. 
 

 
The most useful job of both the binomial and Taylor series is to intelligently approximate 
an impossibly complicated expression to a few simple terms that pretty well equal the full 
solution. We do this when we say ‘taking only the first two or three terms’. However we 
need to apply it correctly. 
 

We can only approximate (1 ) 1nx nx+ ≈ +  or 2( 1)(1 ) 1
2

n n nx nx x−
+ ≈ + +    when x <<1.  

 

   Consider ( )na b+ .  This can be rewritten ( ) 1 (1 )
n

n n n nba b a a x
a

 + = + = + 
 

  where x b a=   

 
The intelligent part is to choose a, b such that   |a| > |b|    so |x| << 1. 
 
How many terms you need to use depends on how small x is and on how accurately you 
need the answer. As a rule of thumb, in most physical applications it is fine to use these 
approximations for x < 0.1 . Obviously if n is very large you need a correspondingly 
smaller value of x for rapid convergence. 
 



MATHEMATICAL METHODS  PHY250 

Alastair Buckley       Sept 2012 Page 5 of 48

Example 1.1 
 

(a) Expand 1
1 x+

   in powers of x.    

 
 

 
 

 
 
(b) If  x = 0.1 and we need accuracy to about 1%, how many terms do we need? 
Since x3 ~10-3 we would guess we could stop at x2.  Let’s check this: 
The exact answer is 1)1.01( −+ = 0.9090909… .   To 1% accuracy this is  0.91. 
The expansion above gave us:- first term = 1, second term = -x, third term = x2, fourth 
term = -x3 So 1)1.01( −+  = 1 – 0.1 + (0.12) – (0.13).  Yes we can stop after two terms. 
 
 
Example 1.2  Rewrite 15)cos(sin θθ +  for small θ using the binomial expansion for the first 
three terms. 
 
 

 
 
 

 

NB. The binomial expansion works for any value of x and n. 
 

It’s just more useful if x <<1 
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1.3  Taylor Series (also on the exam data sheet) 

      2( ) ( )( ) ( ) ( )
2! !

n
nf a f af x a f a f a x x x

n
′′

′+ = + + + + +K K     where   ( )
n

n
n

x a

d ff a
dx =

=  

 

Unlike the binomial expansion, the Taylor expansion can also be used for any function that 
has a derivative. Note that if a = 0 then the Taylor expansion is known as a Maclaurin 
expansion. 
 
The range of x for which there is convergence depends on the function f.  But in practice 
the series is only useful if the first couple of terms give an adequate approximation, which 
means we need x<<1. 
 

Examples 1.3 and 1.4 
 

1.3          Find the Maclaurin expansion of eαx ? 
 
 

 
 
 

1.4  Find the first two terms of the expansion of  tan( )
4

xπ
+ . 
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1.4  Why do we use these expansions so often in physics?   
 
Because we like to solve easy problems. 
E.g. Stability 
 
Suppose a particle of mass m lies on a potential surface V(x) at x = x0.  
There is no resultant force on it at this point – i.e. the particle is in 
equilibrium.  This would be true if x0 were at either of the positions 
marked with arrows in the figure.   
 

The condition that there is no force at x0  is that 
0

( )

x x

dV x
dx =

= 0.   

 
But we want to know whether the equilibrium is stable!    
 
We find this by asking if the potential increases or decreases as we move away from x0.   

This is equivalent to determining whether  
0

2

2

( )

x x

d V x
dx

=

is positive or negative. 

 
 

 
0

2

2

( )

x x

d V x
dx

=

> 0    Stable       
0

2

2

( )

x x

d V x
dx

=

< 0    Unstable 

 
 
Finding and differentiating a complete expression for V(x) might be very hard, but an 
approximate expression valid near x0 is all we need to answer our question. 
 
1.5 Trigonometric and Hyperbolic functions 

 
A key observation looking at sin(x) and cos(x) below is that cos(x) is symmetrical in the y-
axis whereas sin(x) is not. This can be written mathematically as: 
 

 

cos(x) = cos(-x)      and     sin(x) = - sin(-x) 

 

These relationships are crucial in this course 
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We can combine exponentials into the hyberbolic functions: 
 

1cosh
2

x xx e eα αα − = +        is an even function:   cosh cosh( )x xα α= −  

and   
1sinh
2

x xx e eα αα − = −         is an odd function:   sinh sinh( )x xα α= − − . 

 

 
 
Using the definition of the derivative it is easy to show that: 
 

 
cosh 1 sinh

2 2

x x
x xd x de de e e x

dx dx dx

α α
α αα α α α

−
− 

 = + = − =   
 

      

 

Similarly    
sinh coshd x x

dx
α α α= . 
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1.6   Exponentials are powers and so they satisfy:   
 
 baba eee =+         and         ba ee /1=−  
 
1.7   Natural logarithms are defined by  
 

  lnxy e x y= = .   

We also have that  

)/ln(lnln 2121 yyyy =−    and   )ln(lnln 2121 yyyy =+  
 
We can relate natural logs to those to base 10:  
 
Define  10logw y= .  This expression means that 10wy = .   
 
Take natural logs of both sides:  
 

 ( ) ( ) lnln ln 10 ln 10
ln(10)

w yy w w= = =   or  ln(10)wy e= . 

 
 
Online Problems (Topic 1, questions 1-5) 
 

1. Consider (52+3)1.5 . Your calculator will give you an answer of 407.8909 to 4dp. 
How many terms of a binomial expansion do you need to get within 1% of this? 

 
2. In question 1 what would happen if, by factorising differently, you had chosen to 

expand  ( ) 5.1
3

521+  instead of ( ) 5.1
52

31+ ? 
 

3. Expand ( )5ba + , i) where a and b are 2 and 10 respectively and ii) where a and 
b are 10 and 2 respectively 

 
4. Expand ( ) 4/122 −

+ ba  in powers of b/a up to terms of order b4 
 

5. Expand )1ln( x+ via the Taylor expansion up to the 4th term 
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6.    Topic 2. Complex Numbers 
 

2.1 Argand diagram 
 
  Let z = a + ib      where   i2 = - 1           
  
To represent this number on an Argand diagram, plot the 
point with Cartesian coordinates (a, b). i.e. real numbers run 
along the x axis and imaginary numbers along the y axis. 

                 

The complex conjugate is    z* = a – ib 
 
(Note: Physicists usually use i, engineers often use j and 
physicists always denote complex conjugates by z* not z ) 
 
 
  By Pythagoras, the length OZ is zbar =+= 22 .     

  Note that this length is also equal to *zz  
 
  zz* = 2 2 2( )( ) ( )( )a ib a ib a ib ib a b+ − = + − = + .  
 
  We also write  a2 + b2 = *zz  = |z|2   
 
  where *z zz=   and is called the modulus of z.     
 
 
  
 
Example 2.1    Find the modulus of |(2 + 3i)| ? 
 
 

 
 

 

b 

 -b 

a  O 

 z 

 z*



MATHEMATICAL METHODS  PHY250 

Alastair Buckley       Sept 2012 Page 11 of 48

2.2  Polar form 
 
We can also write  
 

( )φφφ sincos irrez i +==   where  πφ 20 <<  
 
r = is again called the modulus,  
φ  is called the argument or phase.   
 
For a proof of this relationship see Lecture 2, problem 2 in the online Problems. 

 

Then  ( )φφφ sincos* irrez i −== −   
So    22* reerzz ii == − φφ    since   1)( == −− φφφφ iii eee   

Clearly   φcosra = ,  φsinrb =    and  zbar =+= 22  
 
 

Note that |z| and zz* = |z|2, are always real, whereas  z2 = a2+ 2iab - b2 = r2e2iφ  ≠ |z|2  is usually 
complex. In physics we always need to get real answers, hence in quantum mechanics etc. 
one takes |ψ|2 not  ψ2.  (In optics and E&M you may sometimes take the real part to get your 
answer.) 
 

 
Changing between the forms  z = a + ib  and  z = reiφ 

 
You are strongly advised to first plot the number on an Argand diagram. Without this it is 
easy to make mistakes about minus signs and angles, etc.!   
 
Given  z = a + ib, to find the form  z = reiφ    

Find r using 2 2r a b= + .   

Find φ  using tan b
a

φ =  (specifying its sign from the quadrant of the Argand diagram.) 

Given  z = reiφ,  to find the form  z = a + ib  is easier:  a = rcosφ   and b = rsinφ . 
 
Why do we need both forms?   
It is easier to add and subtract complex numbers in the form z = a + ib  but easier to 
multiply, divide, take powers and roots when they are in the form z=reiφ.   
In physics we almost always use the form z = reiφ . 
 

φ 
 r

b

a   O

 z 
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Addition and Subtraction 
 
If   z a ib= +    and    w c id= +    
 
then   ( ) ( )z w a c i b d+ = + + +    and   ( ) ( )z w a c i b d− = − + − . 
 
 
Multiplication and Division 
 
For this we always use the form  z = r e iφ  
 
Let 1

1 1
iz r e φ=   and  2

2 2
iz r e φ=    

then  1 2 1 2( )
1 2 1 2 1 2

i i iz z r e r e r r eφ φ φ φ+= =  
 
i.e. multiply the moduli and add the arguments (phases). 
 
Similarly for division:    
  

1 2( )
1 2 1 2( / ) ( / ) iz z r r e φ φ−=  

i.e. we divide the moduli and subtract the arguments. 
 

Example 2.2     Express  (1 + i) ÷ (1 + 1.73i) in polar coordinates? 
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2.3  Powers and Roots 
 
Again we always use the polar form.  For a real number power it is straightforward:  
 

n n inz r e φ=   
 
i.e. we take the modulus to the nth power and multiply the argument (or phase) by n. 
 
 

Roots are trickier.  We defined φ to lie in the region  0 < φ < 2π.  But this will need to be 
extended if we want to get all the roots of a complex number.  
 
 
We define ( 2 )i pz re φ π+=  where p is an integer.   
 

To find an nth root, we need to take n distinct values of p:  p = 0,  p = 1, p = 2, …,  p = n -1. 

   
Then there are n distinct roots to 1 1 ( 2 )n n i p nz r e φ π+= . 
 
 
 
Example 2.3 : If z = 9 eiπ/3  what is z½ ? 
 

Step 1:  

write down z in polars with the 2πp bit added on to the argument.   z = 9ei (π/3 + 2πp)  

 

Step 2:   

say how many values of p you’ll need and write out the rooted expression here n = 2 so I’ll 
need 2 values of p; p = 0 and p = 1    z½ = √9 ei ( π/3 + 2πp)/2 

 

Step 3:  

Work it out for each value of p:  z½ = 3ei (π/3)/2  =  3ei (π/6)      for  p = 0 

 z½ = 3ei (π/3 + 2π)/2  =  3ei (π/6 + π)     for p = 1  

 

There are your answers but remember that e iφ = (cosφ + isinφ)  so  e iπ = -1 

 

It’s therefore better to write z½ = 3ei (π/6 + π) = 3ei π/6(eiπ) = -3ei π/6 for p =1, and 3ei (π/6) for p = 0 
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Example 2.4:  If z = 27 eiπ/2  what is z⅓ ? 

Step 1: write down z in polars with the 2πp bit added on to the argument.    

Step 2:  say how many values of p you’ll need and write out the rooted expression   

Step 3: Work it out for each value of p 

 

 
 

 
 
2.4 Exponentials and Trigonometric functions 
 

 
kxikxeikx sincos +=  ;  and   cos sinikxe kx i kx− = −  

 

Rearranging gives       
1 1cos ( ); sin ( )
2 2

ikx ikx ikx ikxkx e e kx e e
i

− −= + = −  
 

This is a key observation…remember this. 
 

 
 
2.5 Differentiation of a Complex Exponential 
 

We know  kx kxd e ke
dx

= .   Since i is just a constant, we similarly have  ikx ikxd e ike
dx

=  

 
Note that is much nicer to differentiate exponentials than sines and cosines because we 
get exactly the same function as we started with, just multiplied by a constant.   
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Online problems for (Topic 2, questions 1-11) 
 

1. Expand xsinh using the Taylor series up to the 5th power term in x  
 

2. Prove the relationship )sin(cos φφφ irrez i +== using the Taylor expansion 
 

3. Find the modulus of i) i76 +   ii) 
i
i

23
76

+
+

 and iii) plot )23()76( ii +−+ on an Argand 

diagram and give the answer in polar co-ordinates. iv) Express 6/5 πiez = in 
Cartesian co-ordinates and v) Convert i43 + and i125 + into polar co-ordinates 
and multiply them. 

 
4. In quantum mechanics we sometimes need to evaluate the modulus squared of 

the sum of two complex numbers. If αiAez =1  and βiBez −=2  find 2
21 || zz +  

Manipulate your answer into the form )cos(22 βα −++ ABBA  
 

5. iz 32 +=   By changing into polar co-ordinates find 18z ? 
 

6. 4/16 πiez =  Find 4/1z ? 
 

7. Show that 1
2

=
−
+

iba
iba

for any real numbers a and b 

 
8. Find i  

 
9. iz += 1   Find 2/1z  

 
10. Prove titi BeAex )() βαβα −+ +=  can be written as )cossin( tDtCex t ββα +=  and 

define C and D in terms of A and B 
 

11. Prove that )cossin( tDtCex t ββα +=  can be written as ))(cos( φβα += tEex t  and 
define φ  and E in terms of C and D. 
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Topic 3.   Ordinary Differential Equations (ODE’s) 
 

Most of physics involves the solution of differential equations! The solution of ordinary 
differential equations (ODEs) was covered in PHY112. ‘Ordinary’ means that all functions 
are of only one variable. We will revise the theory and explore some examples, especially 
harmonic oscillators. Later lectures will address the solution of partial differential equations 
featuring multiple variables.  
 

3.1  First Order ODEs   (i.e. 1 variable and no higher than 
dt
dx  terms)  

Revision of Theory 
You should be aware of two possible methods for solving 1st order ODEs. Which method 
you use depends on the equation you are trying to solve.  

1. Some equations can be solved by the method of separation of the variables: 
rearrange the equation so that each side involves only one variable, then integrate 
both sides.  

2. The method of trial solution may be used.  
 

The general solution of a 1st order equation will contain one arbitrary constant; the 
value of the constant is determined by the boundary conditions, yielding a particular 
solution. 

Example: Radioactive Decay 
Consider a sample of radioactive material. Let N  be the number of undecayed atoms at 
time t.  At any time, the rate at which atoms decay is proportional to N.     

I.e. )()( tN
dt

tdN
λ−=   where λ is the decay constant.  Given that N = N0 at t = 0, find an 

expression for N at later times.  
 
Method 1  

a) dt
N

dN
λ−=    can be rearranged and both sides integrated: dN dt

N
λ= −∫ ∫ . 

Performing these (indefinite) integrals we obtain   ln N t cλ= − +     (remember c !) 
Hence t c t c tN e e e Aeλ λ λ− + − −= = =  where  A = ec . 
Using the boundary condition that at t = 0, N = N0, we find  A = N0.   Hence  N(t) = N0 e−λt.    
 
b) Alternatively the boundary condition information can be entered as the limits of 
definite integrals: 

     ∫∫ −=
tN

N
dt

N
dN

00

λ      giving   0
0

ln ln ln NN N t
N

λ− = = −   ,  hence  N(t) = N0 e−λt. 

 
Method 2   
We may guess that the equation has a solution of the form ( ) mtN t Ae= .   

Substituting this trial solution into the equation gives ( ) ( ) ( )dN t mN t N t
dt

λ= = − .   

So it is a solution if m = - λ.       i.e. the general solution is ( ) tN t Ae λ−=  . 
Applying the boundary condition we find the solution as before. 
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Example 3.1 The growth of an ant colony is proportional to the number of ants. If at t = 
0 days there are only 2 ants, but after 20 days there are 15 ants, what is the differential 
equation and what is its solution? 
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3.2   Second Order ODEs 
We will restrict our study of 2nd order ODEs to that of linear equations with constant 
coefficients 
 

   2nd order ODE have the form   )(2

2

tfcx
dt
dxb

dt
xda =++ . 

 
We look first at equations with  f(t) = 0,  called  homogeneous  or  unforced.  Next lecture 
we look at equations with  f(t) ≠ 0,  called  inhomogeneous  or  forced  or  driven. [Note: In 
this course we concentrate on the mathematics; the physics is further explored in 
PHY221.] 

 
Homogeneous Equations – Simplest examples with no damping or friction 

Two forms which occur very commonly in physics are: 

1. Linear harmonic oscillator  
2

2
02 ( ) ( )d x t x t

dt
ω= −      or   0)()( 2

02

2

=ω+ txtx
dt
d

 

This equation occurs almost everywhere! E.g. all problems concerning waves (strings, 
light, etc.); small oscillations e.g. lattice vibrations in solids; LC electric circuits. 

2. Unstable equilibrium  )()( 2
2

2

txtx
dt
d

α=       

This has less common occurrences as most systems in unstable equilibrium collapse…  e.g. 
pencil balancing on its point. 

Homogeneous Equations - Revision of Theory 

We have the equation   02

2

=++ cx
dt
dxb

dt
xda . 

Looking for trial solutions of the form mtx e=  leads to the or auxiliary equation 
         

am2 + bm + c = 0. 
 
The roots of this equation are m1 and m2 and the general solution is 
 

    tmtm BeAex 21 +=  
 
- For real, distinct roots, m1 and m2, the general solution is  tmtm BeAex 21 +=    

- For real, repeated roots, m, the general solution is   mteBAtx )( +=  
- For complex roots m βα i±= ,  the general solution may be written 

titi BeAex )()( βαβα −+ +=  )( titit BeAee ββα −+= or equivalent form such 
as )][cos()cossin( φβββ αα +=+= tEetDtCex tt . 

NB. Proofs of these equivalent relationships can be found in the online problems.  
 

Note that the general solution contains two arbitrary constants. Two boundary 
conditions must therefore be applied to find a particular solution.
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Example 3.2  The Linear Harmonic Oscillator 

Find the solution of  0)()( 2
02

2

=ω+ txtx
dt
d

   ?  

 

 
 
Applying Boundary Conditions  

If the particle starts at the origin with velocity V,   i.e.   x(0) = 0  and  0
( ) |t

dx t V
dt = = .   
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Example 3.3  Unstable Equilibrium 

Find the solution of  )()( 2
2

2

txtx
dt
d

α=    ?   

 
 

   
 
Applying Boundary Conditions  

Suppose    x(0) = L      and     0|)(
0 ==tdt

tdx
.    Apply the boundary conditions?  

 
 
 

Compare the solutions of equations (1) and (2). They have very different physical 
characteristics! 
 

Solutions of (1) oscillate for ever. 

 
Solutions of (2) grow to infinity as t increases. 
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3.3   Homogenous 2nd Order ODE’s  

INTRO: Hopefully these equations from PHY102 Waves & Quanta are familiar to you…. 

Free Oscillation with damping:      Forced Oscillation with damping: 

02

2

=++ kx
dt
dxb

dt
xdm       tHkx

dt
dxb

dt
xdm Dωcos02

2

=++  

In this lecture we consider one more common homogeneous equation then two 
inhomogeneous equations.  

Example 3.4  The Damped Harmonic Oscillator   02 2
02

2

=++ x
dt
dx

dt
xd ωγ

   
Looking for solutions of the form emt   
we obtain the characteristic equation 02 2

0
2 =++ ωγmm .   

This quadratic has two solutions:  2
0

2 ωγγ −±−=m       

 
Be careful !  There are three different cases. 
 
(case i) 2

0
2 ωγ >   (over-damping)   

We have two real values for m:   2
0

2
1 ωγγ −+−=m    and     2

0
2

2 ωγγ −−−=m . 

And the general solution is  x(t) = tmtm BeAe 21 + . 
 
Both m1 and m2 are negative so x(t) is the sum of two exponential decay terms and so 
tends pretty quickly, to zero. The effect of the spring has been made of secondary 
importance to the huge damping, e.g. fire doors. 
 

(case ii) 2
0

2 ωγ =   (critical damping)   
The characteristic equation has a double root  m = -γ ,   
so the general solution is   x(t) = e-ωt [A + Bt]   as shown earlier.  
Here the damping has been reduced a little so the spring can act to change the 
displacement quicker. However the damping is still high enough that the displacement 
does not pass through the equilibrium position, e.g. car suspension – push down on the 
wheel arch and hope not to see SHM!  
 

(case iii) 2
0

2 ωγ <   (under-damping) 

The roots are complex.    Define  22
0

2 γω −=Ω    so   Ω±=− 22
0 γω    and  Ω±=− i2

0
2 ωγ . 

Then the two allowed values of m can be written    Ω+−= im γ1    and Ω−−= im γ2 . 
 
The general solution can be written     x(t) = e-γt [AeiΩt + Be-iΩt]     
 
or     x(t) = e-γt [CcosΩt+ DsinΩt]      or       x(t) = Fe-γt cos(Ωt+φ).   
 
See the online Problems Lect3 Prob6. 
The solution is the product of a sinusoidal term and an exponential decay term – so 
represents sinusoidal oscillations of decreasing amplitude. E.g. bed springs. 
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The amplitude will fall to 1/e of its original value after a time 
γ

τ 1
= .   

In many physically interesting cases 2
0

2 ωγ << .   
In this case Ω ∼ ω0 , so  x(t) ≈ Fe-γt cos(ω0t +φ). 

In that time τ the oscillator will have made n oscillations. n = f τ and 
π

ω
2

0=f  hence
πγ

ω
2

0=n .   

The ratio ω0 / 2γ is called Q, the quality factor. Q is widely used in all areas of physics, a 
higher Q indicating a lower rate of energy dissipation relative to the oscillation frequency, 
so oscillations die more slowly. (see PHY102 topic 1 and PHY221).  
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3.4    Inhomogeneous 2nd order ODEs  
 
We now look at inhomogeneous or forced second order linear ODEs with constant 
coefficients. 
 

These are equations of the form     )(2

2

tfcx
dt
dxb

dt
xda =++ . 

 
The two common driven equations which we will discuss are: 
  

Example 3.5 & 3.6 tFtxtx
dt
d ωω cos)()( 2

02

2

=+    Driven oscillator no damping 

 

Example 3.7  tFtx
dt

tdxtx
dt
d ωωγ cos)()(2)( 2

02

2

=++    Damped driven oscillator 

 
Equation 3.7  has applications in countless different areas of science!  These include 
mechanical oscillators, LCR circuits, optics and lasers, NMR, nuclear physics, Mössbauer 
effect, pulsars, etc. etc. Equation 3.5 is usually unphysical, but it’s much easier to solve, so 
we will look at this first! 
 
Revision of Theory   Solution involves four steps: 
 

1) Find the general solution of the related homogeneous equation   02

2

=++ cx
dt
dxb

dt
xda    

 

             (by the methods discussed earlier). Call this complementary solution xc(t).  
 
2) Find any solution of the full equation.  This solution, xp(t), is often called a particular 

solution. It is found using an appropriate trial solution. 
 

e.g.   If    f(t) = t2      try       xp(t) = at2 + bt + c      
 If    f(t) = 5e3t        try xp(t) = ae3t  
 If    f(t) = 5eiωt try xp(t) =aeiωt       
 If    f(t) = sin 2t    try   xp(t) = a cos2t + b sin2t  
                                                                       (or complex version - see below) 
       
  If    f(t) = cos ωt try xp(t) =Re[aeiωt]  see later for explanation 
 If    f(t) = sin ωt try xp(t) =Im[aeiωt]    
 
       If your trial solution has the correct form, substituting it into the differential equation 
will yield the values of the constants a, b, c, etc. 
 
3) The complete general solution is the sum of the two parts above,  x = xc + xp.  
 
4) The complete general solution contains two constants (in xc). If two boundary 

conditions are known, these should be applied to find the values of the constants.  
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Example 3.5    The Undamped, Driven Oscillator      tFtxtx
dt
d

ω=ω+ cos)()( 2
02

2

 
   

Step 1   The corresponding homogeneous equation is simply the LHO equation. From the 
last lecture, therefore, we can take, say,  
 

tBtAtxc 00 sincos)( ωω += . 
 

Step 2  We need to find the ‘particular integral’ using a trial solution. We should try  
 

 xp(t) = a cos ωt + b sin ωt.   
 
Substitute this trial solution into the original equation:  
 

(ω0
2 − ω2)acosωt + (ω0

2 − ω2)bsinωt  = Fcosωt.  

 

Comparing terms we can say that    b = 0   and   (ω0
2 − ω2)a = F 

 
Hence the trial solution is a solution provided    
 

22
0 ωω −

=
Fa ,      i.e.    tFtxp ω

ωω
cos)( 22

0 −
= . 

 
Step 3  So the complete general solution is   
 

tFtBtAtx ω
ωω

ωω cossincos)( 22
0

00 −
++=   

 
Step 4  Suppose a particle subject to the equation above is known to be at rest at   
 
x = L  at  t = 0.  

This means we have the boundary conditions    x(0) = L    and 0| 0 ==tdt
dx . 

Substitute t = 0 in the general solution given above:   
 

LFAx =
−

++= 22
0

0)0(
ωω

   

Differentiating the general solution, then substituting  t = 0  gives  0 0Bω =  

Hence B = 0 and 22
0 ωω −

−=
FLA  so the solution is:  

 

tFtFLtx ω
ωω

ω
ωω

coscos)()( 22
0

022
0 −

+
−

−=  

 

This can be written as    )cos(cos
)(

cos)( 022
0

0 ttFtLtx ωω
ωω

ω −
−

+= . 
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A few comments  
 

1. Note that the solution is clearly not valid for 
0ω=ω ! 

2. The ratio 
F
tx )(

 is sometimes called the response of the oscillator. It is a function of 

ω. It is positive for ω < ω0, negative for ω > ω0 .  This means that at low frequency 
the oscillator follows the driving force but at high frequencies it is always going in 
the ‘wrong’ direction. 

 

         
 
 
Example 3.6   Solution using Complex Numbers  
 
The particular integral of the equation above was easy to find because a trial function of 
the form xp(t) = a cos ωt + b sin ωt worked. In our next equation (a driven oscillator with 
damping) this trial function would also work ... but the algebra gets very messy. It is 
easier to use complex numbers. To learn the complex method we will use it to solve 
equation 4 again for the particular integral. 
 

Compare the original equation      tFtxtx
dt
d

ω=ω+ cos)()( 2
02

2

    (A) 

 

With the equation    tiFetXtX
dt
d ωω =+ )()( 2

02

2

    (B) 

 
We know    Fcosω t = Re(Feiωt),    so if equation (B) has (complex) solutions X(t) then the 
solutions of equation (A) will be the real part of these: x(t) = Re(X(t)). If the function on the 
RHS of (A) was sinωt  then we could use the same approach but at the end take the 
imaginary part.  
 

i.e. first we solve   tiFetXtX
dt
d ωω =+ )()( 2

02

2

. 

 
This is easy: we take a trial solution of the form X = Aeiωt.   
 

Substituting this in gives:  tititi FeeAAe
dt
d ωωω ωωωω =+−=+ )()()( 2

0
22

02

2
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Hence     
)(

)( 22
0 ωω

ω
−

=
FA      so      tieFtX ω

ωω )(
)( 22

0 −
=  

 

To find the particular solution we take the real part:   x(t) = Re(X(t)) = 
)(

cos
22

0 ωω
ω

−
tF     

 
 

Example 3.7  The Damped, Driven Oscillator      tFtx
dt

tdxtx
dt
d ωωγ cos)()(2)( 2

02

2

=++    

 
Step 1  The complementary function will be the solution of the damped harmonic 
oscillator, found at the beginning of this lecture. As discussed there, the appropriate form 
depends on the magnitude of γ compared to ω0. However note that in every case, the 
solution tends to zero as  
t →∞. It is often called the “transient” solution. 
 
Step 2  The particular integral, by contrast, does not die away and is called the “steady 
state solution”. We will find it using the complex method described above. 
 

Consider the equation   tiFetFtX
dt

tdXtX
dt
d ωωωγ ==++ cos)()(2)( 2

02

2

. 

 
Look for solution of form   X = A(ω)eiωt : 

tititi FeAeiAe
dt
d

dt
d ωωω ωωγωωγ =++−=++ )2()2( 2

0
22

02

2

 

So 
)()2(

)( 2
0

2 ωωωγω
ω

Z
F

i
FA =

++−
= .   

 
Remember to divide by a complex, we write it in form  eiφ. 
 
Let  φωωωωγω ieZZi )()()2( 2

0
2 ==++−   where 22222

0 4)()( ωγωωω +−=Z  and 

22
0

2tan
ωω

γωφ
−

= . 

Then  
)()(

)(
ωω

ω
φ

Z
Fe

Z
FA

i−

==     so  )(

)()(
φωω

φ

ωω
−

−

== titi
i

e
Z

Fe
Z
FeX ,  

 
and now the last thing we do is to take the real part of the answer;  
 

hence ]
)(

Re[]Re[)( )( φω

ω
−== tie

Z
FXtx  

so ( ) cos( )
| ( ) |

Fx t t
Z

ω φ
ω

= − . 

 
(Steps 3 & 4 can then be followed if required.) 
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In cases where the damping is small, the amplitude has a strong peak at 0ω ω≈  and the 
quality factor Q is again an important indicator.  
 
 
Closing remarks 
We have focussed on the mathematics of solving generic harmonic oscillator equations. By 
replacing ω, γ, etc. with appropriate constants, you should now be able to solve equations 
for all mechanical oscillators, oscillations in electrical LCR circuits, and numerous other 
oscillators! PHY221 and other courses will explore more of the physical significance of the 
solutions found here.   
 
 
References 
 
The material of lectures 3&4 is covered very thoroughly, with many real physical 
examples, by French: 
 

Undamped, undriven LHO         7-9 
Damped*, undriven LHO  & Q-factor    10-16 
Undamped, driven LHO: steady state    20-24 
   … again using complex exponentials    24-25 
Damped*, driven LHO: steady state    25-28 

 Further discussion of Q, transients, resonance, etc.   31-42 
 Electrical, optical & nuclear examples    42-52 
 
[*Note that French uses a damping constant γ  while we have used 2γ] 
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Online problems (Topic 3, questions 1-11) 
 

1. Verify the solution stated in the notes for )()( 2
2

2

tx
dt

txd α=  subject to Lx =)0(  and 

0)(

0

=
=tdt

tdx
 

 

2. Given that )()( 2
2

2

tx
dt

txd α=  and at 0,0 == xt  and 
0=

=
tdt

dxv   find solution and then 

plot x against αt. 
 

3. Solve  0442

2

=+− y
dx
dy

dx
yd

 with boundary conditions of 4)0( =y  and 0)0(
=

dx
dy

 

 

4. Solve  0432

2

=−+ x
dt
dx

dt
xd

 

 

5. Solve  0222

2

=++ y
dx
dy

dx
yd

 

 
6. Re-write your answer to 3 in terms of cos and sin, removing all complex formatting 

 

7. Solve  01782

2

=+− y
dt
dy

dt
yd

 with boundary conditions 4)0( −=y  and 1)0(' −=y  

 
8. Atmospheric physics – a change in height h∆  causes the pressure to drop by P∆ . 

This follows the equation hgP ∆−=∆ ρ  where ρ  is the density of air. However the 
density is also a functions of the pressure P, so as the height increases the drop in 

pressure is not linear (as it would have been if p was constant).  
kT
mP

=ρ  where m 

is the mass of one molecule, k is the Boltzmann constant and T is temperature and 
P is pressure. Write down the 1st order differential equation that defines the change 
in pressure with height and solve it. 

 
9. The equation describing the process of discharging a capacitor which is initially 

charged to Vb is 0=+
C
Q

dt
dQR  where bCVQ =  at 0=t  

 

10. Solve )3cos(222

2

xy
dx
dy

dx
yd

=++  

 

11. Solve )2sin(3592 2

2

xy
dx
dy

dx
yd

=−−  
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Topic 4.    Fourier Series 
 
References  Jordan & Smith Ch.26,  Boas Ch.7, Kreyszig Ch.11  
Some fun ‘java applet’ demonstrations are available on the web. Try putting ‘Fourier series applet’ 
into Google and looking at the sites from jhu, Falstad and Maths Online Gallery.   
 
4.1   Introduction to Fourier Series   
Consider a length of string fixed between rigid supports. The full behaviour of this system 
can be found by solving a wave equation – a partial differential equation. We will do this 
later in the course. For now we will just recall the basic properties of waves of strings 
which we already know:  
 
There is a fundamental mode of vibration.  
Call the frequency of this mode f and the time period T. 
Then there are various harmonics. These have frequency 2f, 3f, 4f, 5f, …, nf, … 
 
In practice, when a piano or guitar or other string is hit or plucked, it does not vibrate 
purely in one mode – the displacement of the string is not purely sinusoidal, the sound 
emitted is not all of one frequency. In practice, one normally hears a large amount of the 
fundamental plus smaller amounts of various harmonics. The proportions in which the 
different frequencies are present varies – hence a guitar sounds different from a violin or a 
piano, and a violin sounds different if it is bowed from if it is plucked!  
 
(See http://www.jhu.edu/~signals/listen/music1.html pages 1&2) 
 
Remember that if the fundamental frequency has frequency f, its period T = 1/f.  
 
A harmonic wave of frequency nf  will then have a period T/n, but obviously also repeats 
with period T.  
 
So if we add together sinusoidal waves of frequency  f, 2f, 3f, 4f,… the result is a (non-
sinusoidal) waveform which is periodic with the same period T as the fundamental 
frequency,  f = 1/T.     
 
[E.g. play with http://www.falstad.com/fourier/ ] 
 
Sometimes we use the angular frequency ω where the nth harmonic has ωn = 2πnf = 2πn/Τ. 
The various harmonics are then of the form Asinωnt.   
 

sinωt

 
 

0.5 sin2ωt  

 

0.5 sin3ωt
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y1(t) = sinωt+ 0.5 sin2ωt+ 0.5 sin3ωt

 
 

 
      

For all the functions above, the average value over a period is zero. If we add a constant 
term, the waveform remains periodic but its average value is no longer zero: 
                     

y2(t) = 1 + sinωt+ 0.5 sin2ωt+ 0.5sin3ωt

 

 

 
 
                             
What is really useful is that this works in reverse:  
 

Any periodic function with period T can be expressed as the sum of a constant term plus 
harmonic (sine and cosine) curves of angular frequency ω, 2ω, 3ω, ...  where ω = 2π/T .  

 
 

i.e. we can write
   

0 1 1 2 2

0
1

1( ) ( cos sin ) ( cos 2 sin 2 )
2
1 cos sin
2 n n

n

F t a a t b t a t b t

a a n t b n t

ω ω ω ω

ω ω
∞

=

= + + + + +

= + +∑

K

  

where ω = 2π/T. 
 
We will later prove this result mathematically, and later in the semester will see that it can 
be deduced from the general solution of the wave equation. For now you may be able to 
persuade yourself of its plausibility by playing with the various websites – for example, the 
demonstrations of how ‘square’ or ‘triangular’ waveforms can be made from sums of 
harmonic waves. The more terms in the sum, the closer the approximation to the desired 
waveform. Hence in general, an infinite number of terms are needed. 
 
4.2   Why is this useful? 
In lecture 4 we solved the ‘forced harmonic oscillator’ equation  
 

tFtx
dt

tdxtx
dt
d ωωγ cos)()(2)( 2

02

2

=++ .  

 
Such an equation could describe, for example, the response of an electrical LCR circuit to a 
sinusoidal driving voltage. But what would happen if we applied a square wave driving 
voltage?? Using Fourier theory, we would just need to express the square waveform as a 
sum of sinusoidal terms. Then the response would be the sum of the solutions for each 
term (which would all have similar form, but involve different multiples of ω thus also have 
different amplitudes). Throughout physics there are many similar situations. Fourier series 
means that if we can solve a problem for a sinusoidal function then we can solve it for any 
periodic function!  
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And periodic functions appear everywhere! Examples of periodicity in time: a pulsar, a 
train of electrical pulses, the temperature variation over 24 hours or the average daily 
temperature over a year (approximately). Examples of periodicity in space: a crystal 
lattice, an array of magnetic domains, etc. 

 
 
4.3 Towards Finding the Fourier Coefficients 
 
To make things easy let’s say that the pattern repeats itself every 2π metres, so L = 2π.  
 

 
 
The Fourier series can then be expressed more simply in the form  

 

∑
∞

=

++=
1

0 sincos
2
1)(

n
nn nxbnxaaxf . 

 
Now we want to find expressions for the coefficients an and bn. 
 
To do this we need two other bits of preparatory mathematics … 

Other Forms 
If we want to work in terms of t not ω, the formula becomes 

∑
∞

=

++=
1

0
2sin2cos

2
1)(

n
nn T

tnb
T

tnaatf ππ . 
 

Or similarly for a function f(x) which is periodic in space with repetition length L, we 
have  

 ∑
∞

=

++=
1

0
2sin2cos

2
1)(

n
nn L

xnb
L

xnaaxf ππ . 
 

(Any value of T or L can be used, although to keep the algebra straight forward, most 
questions will set T as 2π or even L as 2π metres.)  
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4.4  Average Value of a Function 
 
Consider a function y = f(x). The average value of the 
function between  x = a  and  x = b  is defined to be   

∫−
b

a
dxxf

ab
)(1 . 

 

Geometrically this means that the area under the curve f(x) 
between a and b is equal to the area of a rectangle of width (b-a) and height equal to this 
average value.  Note that while average values can be found by evaluating the above 
integral, sometimes they can be identified more quickly from symmetry considerations, a 
sketch graph and common sense! 
 
Two particularly important results are: 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Actually both these results can be generalized. It is easily shown that: 
 

0cos
2
1sin

2
1 2

0

2

0
== ∫∫

ππ

ππ
dxnxdxnx    and    

2
1cos

2
1sin

2
1 2

0

22

0

2 == ∫∫
ππ

ππ
dxnxdxnx    for n ≠ 0  

 

Hence      0cossin
2

0

2

0
== ∫∫

ππ
dxnxdxnx       and  π

ππ
== ∫∫

2

0

22

0

2 cossin dxnxdxnx      (n ≠ 0) 
 

Note: We have written all the integrals over [0, 2π] but any interval of width 2π 
can be used,   e.g. [–π, π], [13.1π, 15.1π], etc.  
 
4.5  Orthogonality (Proofs in the Appendix) 
 
Sines and cosines have an important property called ‘orthogonality’: 
The product of two different sine or cosine functions, integrated over a period, gives zero: 

 

0cossin
2

0
=∫

π
dxmxnx    for all n, m 

0coscossinsin
2

0

2

0
== ∫∫

ππ
dxmxnxdxmxnx    

for all n ≠ m 
Again we can integrate over any period.  Equipped with these results we can now find the 
Fourier coefficients … 

The average value of a sine or cosine function over a period is 
zero:  

0cos
2
1sin

2
1sin

2
1 2

0

2

0
=== ∫∫∫−

πππ

π πππ
dxnxdxnxdxnx .   

 

The average value of cos2 or sin2 over a period is ½:     

 
2 22 2
0 0

1 1 1sin cos
2 2 2

x dx x dx
π π

π π
= =∫ ∫ . 
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4.6 Fourier Coefficients – Derivation 
 

Earlier we said any function f(x) with period 2π can be written  

∑
∞

=

++=
1

0 sincos
2
1)(

n
nn nxbnxaaxf . 

 
Take this equation and integrate both sides over a period (any period): 

 ∑ ∫∫∫∫
∞

=




 ++=

1

2

0

2

0

2

00

2

0
sincos

2
1)(

n
nn dxnxbdxnxadxadxxf

ππππ
 

 
Clearly on the RHS the only non-zero term is the a0 term:    

00

2

00

2

0
)02(

2
1

2
1)( aadxadxxf ππ

ππ
=−== ∫∫  

  

hence   ∫=
π

π
2

00 )(1 dxxfa       i.e. a0 /2  is the average value of the function f(x). 
 

 
Now take the original equation again, multiply both sides by cosx, then integrate over a 
period: 

∑ ∫∫∫∫
∞

=




 ++=

1

2

0

2

0

2

00

2

0
cossincoscoscos

2
1cos)(

n
nn dxxnxbdxxnxaxdxaxdxxf

ππππ
 

 
On the RHS, this time only the a1 term survives as it is the only term where n=1  
(see Orthogonality.) 

 π
πππ

1

2

0

2
1

2

01

2

0
coscoscoscos)( adxxadxxxaxdxxf === ∫∫∫       

 

hence             ∫=
π

π
2

01 cos)(1 xdxxfa . 

 
The method for finding the coefficients an should thus be clear. To find a general 
expression for an we can take the equation, multiply both sides by cosmx, then integrate 
over a period: 

 ∑ ∫∫∫∫
∞

=




 ++=

1

2

0

2

0

2

00

2

0
cossincoscoscos

2
1cos)(

n
nn dxmxnxbdxmxnxamxdxamxdxxf

ππππ
 

 
On the RHS, only the am term survives the integration: 

π
ππ

mm adxmxamxdxxf == ∫∫
2

0

22

0
coscos)(        hence    ∫=

π

π
2

0
cos)(1 mxdxxfam . 

 

In a similar way, multiplying both sides by sinmx, then integrating over a period we get: 
  

∫=
π

π
2

0
sin)(1 dxmxxfbm  
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4.7  Summary of Results 
 

 
  A function f(x) with period 2π can be expressed as    
 

   ∑
∞

=

++=
1

0 sincos
2
1)(

n
nn nxbnxaaxf  

 

  where     ∫=
π

π
2

00 )(1 dxxfa ,      ∫=
π

π
2

0
cos)(1 dxnxxfan  ,        ∫=

π

π
2

0
sin)(1 dxnxxfbn . 

 
 
  The more general expression from page 2 can be written as:- 
 
 
  A function f(x) with period L can be expressed as     
 

   ∑
∞

=

++=
1

0
2sin2cos

2
1)(

n
nn L

xnb
L

xnaaxf ππ    

 

  where     ∫=
L

dxxf
L

a
00 )(2 ,      ∫=

L

n dx
L

xnxf
L

a
0

2cos)(2 π ,        ∫=
L

n dx
L

xnxf
L

b
0

2sin)(2 π . 

 

Note 

 
1) The formula for a0 can be obtained from the formula for an just by setting n = 0. 
 
2) The integrals above are written over [0, 2π] and [0, L] but any convenient interval of 
width one period may be used, and this will be dependent on the nature of the function 
(see examples and the online Problems). 
 
3) The equations can be easily adapted to work with other variables or periodicities. For 
example, for a function periodic in time with period T just replace x by t and L by T. 
 
4) A few books use the alternative form  
 

0
0

1

( ) cos( )
2 n n

n

dF t d n tω θ
∞

=

= + +∑   and find values of dn and θn. 
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4.8   Examples  

Example 4.1     
Find a Fourier series for the square wave shown. 
 

We have 




<<
<<

=
ππ

π
20

01
)(

x
x

xf      The period is 2π.     

 

 
 
Think: After reaching your answer, ask yourself: is this result sensible?  

- Does the term a0/2  look like an appropriate value for the average value of the 
function over a period? 

- Would we expect this function to be made mainly of sines or of cosines? (See later for 
symmetry). 

- In what proportions would we expect to find the fundamental and the various 
harmonics? 

(You can also try checking your answer by ‘building’ the series at 
http://www.falstad.com/fourier/ or 
http://www.univie.ac.at/future.media/moe/galerie/fourier/fourier.html ) 
 

0          π        2π        3π                 x

1
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Example 4.2 
Find a Fourier series of the function shown: 
 

 
 

Again the period is 2π. 
But this time it is easiest to work with the range [-π, π]. If we wanted we could use the 
range [0,2π] and get the same answer, but it would be fiddlier. 
 
Between -π and π,   f(x) is a straight line with gradient 1 and a Y-intercept of π.  
So we can write  f(x) = x + π      −π < x < π. 
 
Lets find a0 
 

( ) ππ
π

ππππ
π

π
π

π
ππ

π

π

π

π

π

π
221

22
1

2
1)(1)(1 22

2
2

22

0 ==
















−−








+=







+=+==

−
−− ∫∫ xxdxxdxxfa  

Lets find an 
 

== ∫−

π

ππ
dxnxxfan cos)(1

∫∫∫ −−−
+=+

π

π

π

π

π

π
π

ππ
π

π
dxnxdxnxxdxnxx cos1cos1cos)(1  

 

We must integrate ∫−

π

π
dxnxx cos    by parts: 

 
 
 

∫ ∫−= vduuvudv  

u  = x  
dv = cos nx dx 
 
du = dx    

nx
n

nxdxv sin1cos == ∫  

 

So 0cos1sinsin1sincos 2 =



 +=−=

−
−− ∫∫

π

π

π

π

π

π
nx

n
nx

n
xnxdx

n
nx

n
xdxnxx       

(see p.3 average value) 
 

Going back to an ,   

== ∫−

π

ππ
dxnxxfan cos)(1 0cos10cos)(1

=+=+ ∫∫ −−

π

π

π

π
π

π
π

π
dxnxdxnxx    

(see p.3 average value) 
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Now let’s find the bn coefficients…. 
 

∫∫∫∫ −−−−
+=+==

π

π

π

π

π

π

π

π
π

ππ
π

ππ
dxnxdxnxxdxnxxdxnxxfbn sin1sin1sin)(1sin)(1  

 

We must integrate ∫−

π

π
dxnxxsin  by parts:  

 
 
 

∫ ∫−= vduuvudv  

u  = x  
dv = sin nx dx 
 
du = dx    

nx
n

nxdxv cos1sin −== ∫  

 

So     
π

π

π

π

π

π
−

−− ∫∫ 



 +−=

−
−−= nx

n
nx

n
xnxdx

n
nx

n
xdxnxx sin1coscos1cossin 2  

(see p.3 average value) 
 

Going back to bn ,   

0sin1cos1sin1sin1sin)(1
2 +



 +−=+==

−
−−− ∫∫∫

π

π

π

π

π

π

π

π π
π

πππ
nx

n
nx

n
xdxnxdxnxxdxnxxfbn  

 
( )















 −+−

−−
−






 +

−
=



 +−=

−

)sin(1)cos(sin1cos1sin1cos1
222 ππππππ

ππ

π

π

n
n

n
n

n
n

n
n

nx
n

nx
n
xbn

 

Remember that   )cos()cos( ππ nn =−    and    )sin()sin( ππ nn −=−  

 

So ππππ
π

n
n

n
n

n
n

bn cos2sin2cos21
2 −=














 +

−
=     What will bn be for different values of n? 

 

 
n = 1 n = 2 n = 3 n = 4 

1
2)1(

1
21cos

1
2

=−−=− π  
2
2)1(

2
22cos

2
2

−=−=− π  
3
2)1(

3
23cos

3
2

=−−=− π  
4
2)1(

4
24cos

4
2

−=−=− π  

 

Hence   ∑
∞

=

+−
+=+−+−++=

1

1

sin)1(2...4sin
4
23sin

3
22sin

2
2sin

1
20

2
2)(

n

n

nx
n

xxxxxf ππ  
 

Notes 
1) Where a function has discontinuities, the Fourier Series converges to the midpoint of 
the jump (e.g. in example 1 at x = 0, π, etc the series has value ½). 
2) In general the lowest frequency terms provide the main shape, the higher harmonics 
add the detail. When functions have discontinuities, more higher harmonics are needed. 
Hence in both the above examples the terms drop off quite slowly. In general, for 
smoother functions the terms drop off faster. 
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Therefore the Fourier series 
of an even function 
contains only cosine terms. 

Similarly, the Fourier series 
of an odd function contains 
only sine terms. 

4.9  Even and Odd Functions 
 

For an even function,  fe(-x) = fe(x)  

i.e. the graph y = f(x) has reflection symmetry in the y-axis. 

For an odd function,   fo(-x) = - fo(x)   

i.e. the graph y = f(x) has 180º rotational symmetry about the origin. 

 

Any sum of even functions is 
also an even function.  
Hence ∑∞

=0
cos

n n nxa  is always 

an even function.  

 

It is exceptionally useful to remember this! E.g. if you are asked to find the Fourier 
series of a function which is even, you can immediately state that bn = 0 for all n, meaning 
that there will be no sine terms. 
 
You should also remember the following facts (easily verified algebraically or by sketching 
graphs): 

• The product of an even function and an even function is even 

• The product of an odd function and an odd function is even 

• The product of an even function and an odd function is odd 
 
 



MATHEMATICAL METHODS  PHY250 

Alastair Buckley       Sept 2012 Page 39 of 48

Example 4.3 
Find a Fourier series of the function shown: 
 

 
The period is L. As discussed earlier we can integrate over any full period e.g. ∫

L

0
or ∫−

2/

2/

L

L
 

 
The function is even and can be written f(x) =1 for 4

3
4

LxL ≤≤ . Therefore there will be no 

sine terms (bn = 0 for all n) and I feel like integrating between 0 and L. The series will have 
form 
   

∑
∞

=

+=
1

0
2cos

2
1)(

n
n L

xnaaxf π     where     ∫=
L

dxxf
L

a
00 )(2       and     ∫=

L

n dx
L

xnxf
L

a
0

2cos)(2 π . 

 

So   ][ 1212)(2 4/3
4/

4/3

4/00 ==== ∫∫ L
L

L

L

L
x

L
dx

L
dxxf

L
a  

       







 −=



=== ∫∫ )

4
2(sin)

4
6(sin12sin

2
22cos122cos)(2 4/3

4/

4/3

4/0

ππ
π

π
π

ππ nn
nL

xn
Ln

Ldx
L

xn
L

dx
L

xnxf
L

a
L

L

L

L

L

n

 
 







 −=







 −= )

2
(sin)

2
3(sin1)

4
2(sin)

4
6(sin1 ππ

π
ππ

π
nn

n
nn

n
an  

 
Expression for an is not very pretty and easy to make mistakes with. Write out a table to 
help with assignment of coefficients…. 
 

n = 1 n = 2 n = 3 n = 4 
 

π
ππ

π
2)

2
(sin)

2
3(sin1

−=






 −

 
0)

2
2(sin)

2
6(sin

2
1

=






 −

ππ
π

 

π
ππ

π 3
2)

2
3(sin)

2
9(sin

3
1

=






 −  

 

 
0)

2
4(sin)

2
12(sin

4
1

=






 −

ππ
π

 

n = 5 n = 6 n = 7 n = 8 
 

π
ππ

π 5
2)

2
5(sin)

2
15(sin

5
1

−=






 −

 
0)

2
6(sin)

2
18(sin

6
1

=






 −

ππ
π

 

 

π
ππ

π 7
2)

2
7(sin)

2
21(sin

7
1

=






 −

 

 
0)

2
8(sin)

2
24(sin

8
1

=






 −

ππ
π

 

 
       

So   ...10cos
5
26cos

3
22cos2

2
1)( +






−






+






−=

L
x

L
x

L
xxf π

π
π

π
π

π
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4.10   Half-Range Series 
Sometimes we want to find a Fourier series representation of a function which is valid just 
over some restricted interval. We could do this in the normal way and then state that the 
function is only valid over a specific interval. However, the fact that we can do this allows 
us to use a clever trick that reduces the complexity of a problem. We will study this by 
considering the following example: 
 

Example 4 
Consider a guitar string of length L that is being plucked.  

(Note on application: If a string was released from this position, 
finding this Fourier series would be a crucial step in determining 
the displacement of the string at all subsequent times – see later in course.) 

We could, as before, apply the Fourier series to a pretend infinite series of plucked strings 
and then say that the expression was only valid between 0 and L. 

 

 
 
However this series would contain both sine and cosine terms as there is neither even nor 
odd symmetry, and so would take ages to solve. There is a much more clever way to 
proceed…. 

Note that we are only told the form of the function on the interval [0, L]. All that matters is 
that the series corresponds to the given function in the given interval. What happens 
outside the given interval is irrelevant. The way to tackle such a problem is to consider an 
artificial function which coincides with the given function over the given interval… but 
extends it and is periodic.  

 

Clearly we could do this in an infinite number of different ways, however in the previous 
section, we observed that the Fourier series of odd and even functions are particularly 
simple. It is therefore sensible to choose an odd or even artificial function! 

If the original function is defined on the range [0, L] then there are always odd and even 
artificial functions with period 2L. In this case these look like  

 

        Odd extension 

 

       Even extension 
 
These functions are called the odd extension and even extension respectively. 
Their corresponding Fourier series are called the half-range sine series and half-range 
cosine series. 
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Theory 
We saw earlier that for a function with period L the Fourier series is:-   
 

∑
∞

=

++=
1

0
2sin2cos

2
1)(

n
nn L

xnb
L

xnaaxf ππ ,  where ∫=
L

n dx
L

xnxf
L

a
0

2cos)(2 π , 

∫=
L

n dx
L

xnxf
L

b
0

2sin)(2 π  

 
In this case we have a function of period 2L so the formulae become 

∑
∞

=

++=
1

0 sincos
2
1)(

n
nn x

L
nbx

L
naaxf ππ ,  where ∫−

=
L

Ln dx
L

xnxf
L

a πcos)(1 , 

∫−
=

L

Ln dx
L

xnxf
L

b πsin)(1  

Remembering also that  ∫∫ =
−

b

e

b

b e dxxfdxxf
0

)(2)( ,   we get the following results: 

 

Half-range cosine series:   ∑
∞

=

+=
1

0 cos
2
1)(

n
n L

xnaaxf π ,         where  ∫=
L

n dx
L

xnxf
L

a
0

cos)(2 π . 

Half-range sine series:       ∑
∞

=

=
1

sin)(
n

n L
xnbxf π ,                    where  ∫=

L

n dx
L

xnxf
L

b
0

sin)(2 π . 

 

Note : The resulting series is only valid over the specified interval! 
 
Example 4.4 
Find a Fourier series which represents the 
displacement  y(x), between x = 0 and L, of the 
‘plucked string’ shown. 
 
Let us choose to find the half-range sine series. 
 

We have  




<<−
<<

=
LxLLdxL

LxLdx
xy

2)(2
202

)(  

 

So   
0

2 sin ( )
L

m
m xb dx Y x

L L
π

= ∫
/ 2

0 / 2

2 2 2 2sin ( )sin
L L

L

dx m x d m xdx dx L x
L L L L L L

π π
= + −∫ ∫  

 
Using integration by parts, it can be shown that the result is:      
 

bn    2 2

8 sin
2

d m for m odd
m

π
π

=               

 
bn  =  0          for       m     even 

So for  0 < x < L  we have     2

8 1 3 1 5 1 7( ) sin sin sin sin .........
9 25 49

d x x x xY x
L L L L

π π π π
π

 = − + − +  
 

Work out the full solution for yourself. This question is answered in the online  problems. 
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Further Results 

4.11 Complex Series. 
For the waves on strings we need real standing waves. But in some other areas of physics, 
especially solid state physics, it is more convenient to consider complex or running waves. 
Remember that: 
 

1 1cos ( ); sin ( )
2 2

ikx ikx ikx ikxkx e e kx e e
i

− −= + = − = )(
2

ikxikx eei −−
−  

 
The complex form of the Fourier series can be derived by assuming a solution of the 

form ∑
∞

−∞=

=
n

inx
necxf )( and then by evaluating the coefficients as in section 3, taking the 

expression and multiplying both sides by e-imx and integrating over a period:  
 

 ∑ ∫∑ ∫∫
∞

−∞=

−
∞

−∞=

−− ==
n

xmni
n

n

imxinx
n

imx dxecdxeecdxexf
πππ 2

0

)(2

0

2

0
)(  

 
For n m≠ the integral vanishes. For n=m the integral gives 2π.  Hence   

dxexfc inx
n

−∫=
π

π
2

0
)(

2
1  

 
Complex Fourier Series for a function of period 2π:    
 

    ∑
∞

−∞=

=
n

inx
necxf )(    where   dxexfc inx

n
−∫=

π

π
2

0
)(

2
1  

 
A function f(x) with period L can be expressed as:-   
 

    ∑
∞

−∞=

=
n

Linx
necxf π2)(    where     dxexf

L
c LinxL

n
/2

0
)(1 π−∫=  
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Let’s have a look at an example of complex Fourier series. 
 
Example 4.5 

Find the complex Fourier series for f(x) = x in the range -2 < x < 2 if the repeat period is 4. 
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4.12   Parseval’s Theorem 
 
Consider again the Fourier series    
 

∑
∞

=

++=
1

0 sincos
2
1)(

n
nn nxbnxaaxf . 

 
Square both sides then integrate over a period:    
 

[ ] dxnxbnxaadxxf
n

n
n

n

2

11
0

2

0

2

0

2 sincos
2
1)( 








++= ∑∑∫∫

∞

=

∞

=

ππ
 

 
The RHS will give both squared terms and cross term. When we integrate, all the cross 
terms will vanish. All the squares of the cosines and sines integrate to give π (half the 
period.  Hence… 
 

[ ] ][
4

2)( 2

1

2
2

02

0

2
n

n
n baadxxf ++= ∑∫

∞

=

ππ
π

     

 
 

The energy in a vibrating string or an electrical signal is proportional to an integral like  
 

[ ] dxxf∫
π2

0

2)( . 

 
Hence Parseval’s theorem tells us that the total energy in a vibrating system is equal to 
the sum of the energies in the individual modes.  
                                                      
 
 
From PHY101…
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4.13   Appendix: Orthogonality 
 
At a fundamental mathematical level, the reason the Fourier series works – the reason any 
periodic function can be expressed as a sum of sine and cosine functions – is that sines 
and cosines are orthogonal. 
 
In general, a set of functions u1(x), u2(x), … , un(x),…  is said to be orthogonal on the interval 
[a, b] if  

 




=
≠

=∫ mnc
mn

dxxuxu
n

b

a mn

0
)()(         (where cn is a constant). 

 
Here we will prove that function sinnx, cosmx, etc are orthogonal on the interval [0, 2π]. 
 

1.  ∫∫ −−+=
ππ 2

0

2

0
)sin()sin(

2
1cossin dxxmnxmndxmxnx     

        [Using sin( ) sin( ) 2sin cosa b a b a b+ − − = ] 
    

    0)cos(1)cos(1
2
1 2

0

=



 −

−
++

+
−=

π

xmn
mn

xmn
mn

 

 

Hence    0cossin
2

0
=∫

π
dxmxnx  for n ≠ m 

 

2.  ∫∫ +−−=
ππ 2

0

2

0
)cos()cos(

2
1sinsin dxxmnxmndxmxnx     

        [Using cos( ) cos( ) 2sin sina b a b a b− − + = ] 
    

    0)sin(1)sin(1
2
1 2

0

=



 −

−
−−

−
=

π

xmn
mn

xmn
mn

 

 

Hence    0sinsin
2

0
=∫

π
dxmxnx  for n ≠ m. 

 

3.  ∫∫ −++=
ππ 2

0

2

0
)cos()cos(

2
1coscos dxxmnxmndxmxnx          

         [Using cos( ) cos( ) 2cos cosa b a b a b− + + = ] 
    

    0)sin(1)sin(1
2
1 2

0

=



 −

−
++

+
=

π

xmn
mn

xmn
mn

 

 

Hence    0coscos
2

0
=∫

π
dxmxnx  for n ≠ m 
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For n = m ≠ 0  the integrals becomes:   
 

1.  02cos
4
12sin

2
1cossin

2

0

2

0

2

0
=



−== ∫∫

π
ππ

nx
n

dxnxdxnxnx  

 

2.  π
π

ππ
=



 −=−= ∫∫

2

0

2

0

2

0

2 2sin
2
1

2
1)2cos1(

2
1sin nx

n
xdxnxdxnx  

 

3.  π
π

ππ
=



 +=+= ∫∫

2

0

2

0

2

0

2 2sin
2
1

2
1)2cos1(

2
1cos nx

n
xdxnxdxnx  

 

For n = m = 0  the first two integrals become 00
2

0
=∫

π
dx  and the third becomes π

π
21

2

0
=∫ dx  

 
Note 

1. Similar results can be proved for function of periodicity L. 
2. The results (n ≠ 0) are easy to remember: ALL integrals over sines and cosines over 

a full period give zero, unless the integrand is a square in which case the integral is 
always equal to half the range of the integral. 

 
 
Online Problems (Topic 4, questions 1-12)  
 

1. Given a square wave function 




==
==

=
 4/3  to4/for   0)(

4  to4for   1)(
)(

LLxxf
L/-L/xxf

xf  that repeats 

every L, show that any integral range is acceptable so long as Lmax – Lmin = L 
 
2. Find the complex exponential Fourier series for the function specified as 

xexf −=)(   for π20 << x  
 

3. Find the Fourier series for the function 








<≤
<≤−

<≤−
=

12/1  if  0
2/11  if   t)os(3

2/11  if  0
)(

t
tc

t
tf π   where 

the repeat period is 2. 
 

4. Find the Fourier series for the sawtooth function 





<≤=
<≤−−=

=
π

π
xxxf

xxxf
xf

0for   )(
0for   )(

)(  

 

5. Sketch the function 




==
==

=
 4  to0for   5)(
0  to4for   0)(

)(
ttf

-ttf
tf  for two periods and find its 

Fourier series. 
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6. The function f(t) with period τ is defined in the interval [-τ/2, τ/2] by 





<<
≤<−−

=
2/0  if  1

02/ if  1
)(

τ
τ

x
t

tf   Find the Fourier series. 

 
7. I’m thinking of the function θcos=y . Sketch it, tell me what the period is, and 

find its Fourier series. 
 

8. A guitarist pulls a string as shown below. Draw the odd and even extensions of 
the plot and deduce the functions f(x) for both the 0<x<L ranges 

 

      
 

9. Find the half range cosine series for question 8 above. 
 

10. Find the Fourier series that represents the displacement y(x) between x=0 and 
x=L of the string below. 

 
11. Show that the half range cosine series can be used to calculate the Fourier 

series between 0<x<2π for the sawtooth function in question 4. 
 

12. A function f(x) is defined only on the range 0<x<L and on this range f(x)=k 
where k is a positive constant. Sketch the function and also show that the half 

range Fourier sine series of the function is ∑=
oddn L

xn
n

kxf
 

sin14)( π
π

 

 



MATHEMATICAL METHODS  PHY250 

Alastair Buckley       Sept 2012 Page 48 of 48

Topics 1-4  Summary 
 

Binomial series 2 3( 1) ( 1)( 2)(1 ) 1
2! 3!

n nnn n n n nx nx x x x
k

 − − −
+ = + + + + + + 

 
K K  where 

( )
!

! !
n n
k n k k

 
=  − 

. 

Taylor series 
2( ) ( )( ) ( ) ( )

2! !

n
nf a f af x a f a f a x x x

n
′′

′+ = + + + + +K K  where ( )
n

n
n

x a

d ff a
dx =

=  

)cos()cos( xx αα =−   Even 

)sin()sin( xx αα −=−  Odd 
 

kxikxeikx sincos +=  
cos sinikxe kx i kx− = −  

Trig functions [ ]xixi eex ααα −+=
2
1cos  

[ ]xixi ee
i

x ααα −−=
2
1sin   

nkxinkxkxikx n sincos)sin(cos +=+  

Hyperbolic 
functions 

1cosh
2

x xx e eα αα − = + 

1sinh
2

x xx e eα αα − = − 
 

 

cosh cosh( )x xα α= −  Even 
 
sinh sinh( )x xα α= − −   Odd x

dx
xd

x
dx

xd

cosh)(sinh

sinh)(cosh

=

=
 

Exponentials & 
logarithms 

baba eee =+  
ba ee /1=−  

lnxy e x y= =  

)/ln(lnln 2121 yyyy =−   and   )ln(lnln 2121 yyyy =+  

( ) ( ) lnln ln 10 ln 10
ln(10)

w yy w w= = =  or  ln(10)wy e= . 

Complex 
numbers 

1−=

+=

i

ibaz
 

22*||

*

bazzz

ibaz

+==

−=
 

a
b

bar

reibaz i

=

+=

=+=

φ

φ

tan

22  

n n inz r e φ=  
 

1 1 ( 2 )n n i p nz r e φ π+=
where there are n 
distinct roots 

2nd order ODEs 
02

2

=++ cx
dt
dxb

dt
xda   has trial solution  mtx e=   leading  to auxiliary equation   

am2 + bm + c = 0  with general solution 
tmtm BeAex 21 +=  

 

Inhomogeneous  
2nd order ODEs )(2

2

tfcx
dt
dxb

dt
xda =++  has solution x = xc + xp  where xc is the solution to the 

related homogenous equation 02

2

=++ cx
dt
dxb

dt
xda  and xp is a particular solution of 

found using an appropriate trial solution. 
Fourier series Any periodic function (period 2π) can be written 

∑
∞

=

++=
1

0 sincos
2
1)(

n
nn nxbnxaatf  

where ∫=
π

π
2

00 )(1 dxxfa ; ∫=
π

π
2

0
cos)(1 dxnxxfan ; ∫=

π

π
2

0
sin)(1 dxnxxfbn  

Complex Fourier 
series ∑

∞

−∞=

=
n

inx
necxf )(    where   dxexfc inx

n
−∫=

π

π
2

0
)(

2
1

 

Orthogonality 0cossin
2

0
=∫

π
dxmxnx  for n ≠ m       0sinsin

2

0
=∫

π
dxmxnx  for n ≠ m. 

0coscos
2

0
=∫

π
dxmxnx  for n ≠ m 

 
 


