PHY226 Tutorial Questions

Week 2: Binomial Series and Complex numbers

- 1. (a) Find the first few terms in the binomial series expansion of $(1-x)^{-1/2}$.
 - (b) In the theory of special relativity, an object moving with velocity v has mass $m = \frac{m_o}{\sqrt{1 v^2/c^2}}$ where

 m_0 is the mass of the object at rest and c is the speed of light. The kinetic energy of the object is the difference between its total energy and its energy at rest: $K = mc^2 - m_0c^2$. Using the series found in (a), show that when v << c, the relativistic expression for K agrees with the classical expression $K = \frac{1}{2} mv^2$.

O a) Expand
$$(1-x)^{\frac{1}{2}}$$

binomy d $(1+x)^{4} = 1+xx + \frac{A(A-1)x^{2} + A(A-1)(A-2)x^{3}}{2!}$
 $(1-x)^{\frac{1}{2}} = 1 + (-\frac{1}{2})(-x) + (-\frac{1}{2})(-\frac{1}{2})(-x)^{2} + (-\frac{1}{2})(-\frac{$

(c) What is
$$z^{\frac{1}{3}}$$
 if $z = 64e^{\frac{i\pi}{3}}$?

(1) c)
$$Z = 64e^{i\pi/3}$$
 find $Z^{\frac{1}{3}}$ Three roots read
$$Z^{\frac{1}{3}} = (44)^{\frac{1}{3}}e^{i(\frac{\pi}{3} + 2\pi\rho)/3} \text{ where } \rho = 0,1,2$$

$$Z^{\frac{1}{3}} = 4e^{i\pi/9}, 4e^{7i\pi/9}, 4e^{13i\pi/9}$$

Week 3: First and second order ODEs

- 2. Make sure you can state (hopefully instantly!) the general solution of the following 1st order ODEs: (a) $\frac{dx}{dt} = -\alpha x$, (b) $\frac{dx}{dt} = \beta x$, (c) $\frac{dx}{dt} = i\gamma x$, where α , β , γ are real positive constants. In what physical situations might equations of forms (a) and (b) occur?
- 3. What is the solution of the equation $\frac{dN(t)}{dt} = 0$ subject to the condition that $N = N_0$ when t = 0?
- 4. 2^{nd} order ODEs. In lecture 4 we discussed the equations and solutions for the linear harmonic oscillator and unstable equilibrium. Now consider the 1D time independent Schrodinger equation for the spatial wavefunction u(x) of a particle of energy E in a constant potential V: $-\frac{\hbar^2}{2m}\frac{d^2u}{dx^2} + Vu = Eu$. Which form does this equation have, and what do its solutions look like, (i) for V < E? (ii) for V > E?

- (3) a) dx = ax x = Ae at where A is a complant
 - b) dx = Bx x = Aept
 - c) dx = iYx x = AeiYt

a - hadioactive decay b - bacterial growth

(SAPOZ

3) dN(t) =0 where N=No at t=0

N=No always

(4) -th du + Vu = Eu 13 a 2rd order homogenon ODE

of form adu + bu = 0

 $a = -\frac{h^2}{2a}$, b = V - E

IF V/E the bis -ve

the Sol is sum of exponentials and unstable u(x)=Aex+Be-ax

If V>E then bis the

Sola is wavelete and stable u(x) = A cosut + Bs. nwt

Week 4: ODEs cont.

5. (a) Express the complex function $Z(\omega) = -\omega^2 + 2i\gamma\omega + \omega_0^2$ in the form $Z(\omega) = |Z(\omega)|e^{i\phi}$ by finding expressions for $|Z(\omega)|$ and $\tan\phi$.

(5) a)
$$\frac{2(\omega)}{2(\omega)} = -\omega^2 + 2i\gamma\omega + \omega^2$$

$$\frac{2(\omega)}{2(\omega)} = (\omega^2 - \omega^2) + i(2\gamma\omega) \quad \text{of form a + ib}$$

$$\frac{2}{2} = \frac{1}{2}e^{i\phi} \qquad \qquad |2| = \sqrt{a^2+b^2}$$

$$|2| = \sqrt{(\omega^2-\omega^2)^2 + 4\gamma^2\omega^2}$$

$$\phi = +m^{-1}\left(\frac{2\gamma\omega}{\omega^2-\omega^2}\right)$$

(b) In the lecture we said that if X(t) is a solution of the equation $a\frac{d^2X}{dt^2} + b\frac{dX}{dt} + cX = Fe^{i\omega t}$ then x(t) = Re[X(t)] is the solution of $a\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = F\cos\omega t$. Can you justify this?

has soln
$$X = X_c + X_p$$

where X_c is the solution to $aa^2X + bdX + cX = 0$

and is always real (one of three form)

 X_p is the partialar soln and has form $ge^{i\omega t}$

the $aa^2X + bdx + cx = Fcos\omega t$ has solution $x_c + x_p$

Since $x_c = X_c$ only the partialar soln can be form $x_c + x_p$

will be real. $x_c = x_c$ only the driving term is real the x_p

will be real. $x_c = x_c$

(c) Using complex exponentials, find the steady state solution of the damped, driven oscillator equation $\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = F \cos \omega t.$

Steady State Sol' is partialar Solution
$$x_p$$
.

Using Complex form $x_p = Re(geint)$

$$\frac{d^2x_p}{dt^2} = -gw^2e^{i\omega t} \quad \frac{dx_p}{dt} = giwe^{i\omega t}$$

Substituting gives $-gw^2 + 2Ygiw + \omega_0^2g = F$

$$\int = \frac{F}{\omega^2 - \omega^2 + 2Ygiw}$$

but $x_p = Re(geint)$

$$x_p = Re(geint)$$

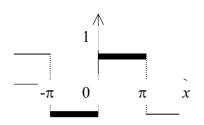
$$x_p =$$

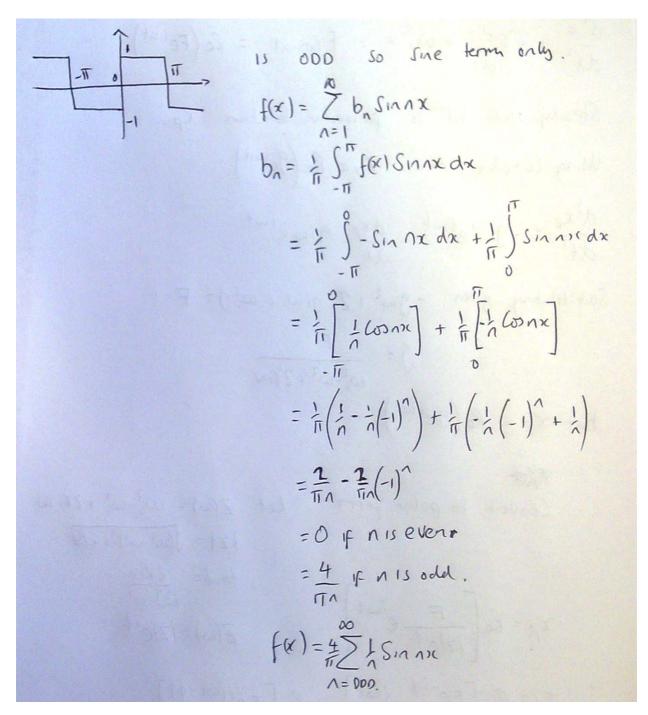
Week 5: Fourier Series

6. Show that the function shown has Fourier series

$$f(x) = \frac{4}{\pi} \sum_{n \text{ odd}} \frac{1}{n} \sin nx$$

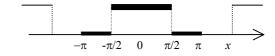
Explain why the series only contains sine terms.

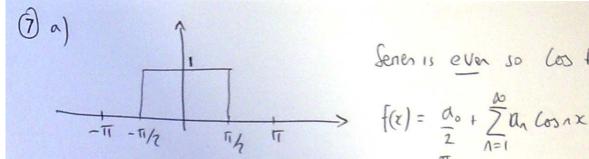




7. (a) Show that the function shown has Fourier series

$$f(x) = \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - \dots \right)$$





$$Q_{n} = \frac{\pi h}{h} \int d\omega dx + 0$$

Senen is even so Cos terms only
$$f(x) = \frac{do}{2} + \sum_{n=1}^{\infty} d_n \cos nx$$

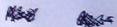
$$d_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dnx.$$

$$d_n = \frac{1}{\pi} \int_{-\pi}^{\pi} dx = \frac{1}{\pi} \left(\frac{\pi}{2} + \frac{\pi}{4} \right) = 1$$

$$Q_{n} = \frac{1}{4\pi} \frac{3}{16\pi} \left(\frac{1}{4\pi} \sin n \frac{\pi}{2} - \frac{1}{4\pi} \sin \left(-\frac{\pi}{2} \frac{\pi}{2} \right) \right)$$

$$= \frac{\pi}{16\pi} \left(\sin n \frac{\pi}{2} \right)$$

$$= \frac{\pi}{16\pi} \left(\sin n \frac{\pi}{2} \right)$$

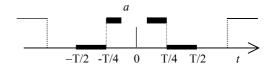


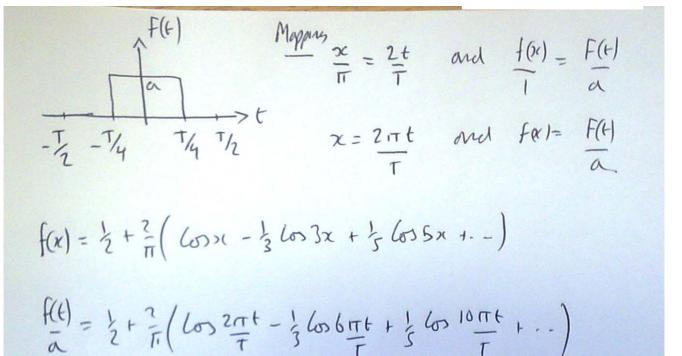
$$\begin{array}{lll}
\Lambda = 1 & & & \\
\Lambda = 2 & & \\
\Lambda = 2 & & \\
\Lambda = 2 & & \\
\Lambda = 0 & & \\
\Lambda = 4 & & \\
\Lambda = 4 & & \\
\Lambda = 5 & & \\
\Lambda = 5 & & \\
\Lambda = 2 & & \\
\Lambda = 5 & & \\
\Lambda = 5 & & \\
\Lambda = 6 & & \\
\Lambda = 7 & & \\
\Lambda = 7$$

$$f(x) = \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x +$$

(b) Hence deduce that the function below has series

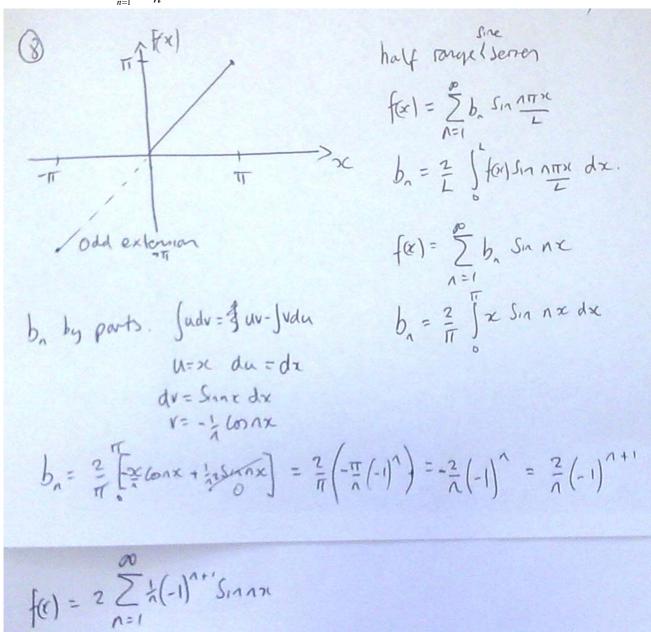
$$f(t) = \frac{a}{2} + \frac{2a}{\pi} \left(\cos \frac{2\pi t}{T} - \frac{1}{3} \cos \frac{6\pi t}{T} + \frac{1}{5} \cos \frac{10\pi t}{T} - \dots \right)$$





- 8. A function is defined on the range $[0, \pi]$: f(x) = x $0 < x < \pi$
 - (a) Sketch the *odd extension* of this function. Show that the corresponding half-range sine series is

$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx$$



(b) Sketch the even extension of this function. Find the corresponding half-range cosine series.

