PHY226
EXPONENTIALS, FUNCTIONS AND COMPLEX NUMBERS

A key observation looking at sin(x) and cos(x) below is that cos(x) is symmetrical in the Y-axis whereas
sin(x) is not. This can be written mathematically as:-

cos(x) =cos(-x) and sin(x) = - sin(-x) These relationships are crucial in this course
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We can combine exponentials into the hyberbolic functions:

1 - . .
coshax = E[e‘” +e ””‘J is an even function: cosh ax = cosh(—ax)

. 1 _ . . . .
and  sinhax= E[e‘“ —e ‘”] is an odd function: sinh ax = —sinh(—ax).
10
—=-exp(x)
s [ —In(x)
4 —2— exp(-x) i
6 | —<—sinhx = 0.5[expx - exp-X]
coshx = 0.5[expx + exp-X]

Using the definition of the derivative it is easy to show that:

d sinh ax

dcoshax 1|de™ de™ | ar ,. _u .
=— + :—[e —e ]:asmhax and ———=acoshax.
dx 2| dx dx 2 dx
Exponentials are powers and so they satisfy: e*™ =e%"and e®=1/¢"
Natural logarithms are defined by y=¢" x=Iny.
We also have that In y; + In y, = In (y1y2) and In y; — In y, = In (ya/y>)
We can relate natural logs to those to base 10:
Define w=log,, y. This expression means that y =10".
Take natural logs of both sides: Iny = ln(lOW) =win(10) w= Iny or y=e"",
In(10)
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PHY226
Complex Numbers

Letz=a+ib where i*=-1 (Note: Physicists usually use i, engineers often use ;.)
To represent this number on an Argand diagram, plot the point with
Cartesian coordinates (a, b). i.e. real numbers run along the x axis and ] . Z

imaginary numbers along the y axis.

The complex conjugate is z*=a-ib 0
(Note: physicists always denote complex conjugates by z* not z .)

By Pythagoras, the length OZ is (a’ + b° )1/ 2, b z

Note that this length is also equal to (z z%)"%, since zz*= (a+ib)(a—ib)=a® +(ib)(—ib) = a® +b>.

We also write o’ + b” = (22) = |z]* where z| =./zz* and is called the modulus of z.

Example 1: Find the modulus of |(2 + 31)| ?
2+3D)P=2+3)2-30) = 4 -9 = 4+ 9 =13 So|2+3i)=VI3.

Polar form _
We can also write z=re'? =r (cosg+ising), 0<¢<2n

where r = is again called the modulus, ¢ is called the argument or phase. 1" z
For a proof of this relationship see Lecture 2, problem 2 in Phil’s Problems. .
Then z*=re ™ \(I)

So zz* =/ =17 since €f¢’ =PV ==1 [9) a

Clearly a=rcos ¢, b=rsing, and r=+a’+b> =z

Note that |z| and zz* = |z|%, are always real, whereas z° = a’+ 2iab - b* = "e®® = |z* is usually complex.
In physics we always need to get real answers, hence in quantum mechanics etc. one takes |yf> not /.
(In optics and E&M you may sometimes take the real part to get your answer.)

Changing between the forms z=a+ib and z = re'
You are strongly advised to first plot the number on an Argand diagram. Without this it is easy to make
mistakes about minus signs and angles, etc.!

. Given z =g + ib, to find the form z = re'’ : Find r using r = Va? +b%.
Find ¢ using tan¢g = b and specifying the quadrant, or read the angle off the Argand diagram.
a

. Given z = ré', to find the form z = a + ib is easier: a = rcos¢p and b = rsin .

Why do we need both forms?
It is easier to add and subtract complex numbers in the form z = a + ib but easier to multiply, divide, take
powers and roots when they are in the form z=re’’. In physics we almost always use the form z = re’” .

Addition and Subtraction
If z=a+ib and w=c+id then z+w=(a+c)+i(b+d) and z-w=(a—-c)+i(b-d).

Multiplication and Division

For this we always use the form z=re ™.

Let z; =re” and z, =re® then zz, = e re® = rre 9%
1.e. multiply the moduli and add the arguments (phases).

Similarly for division: (z,/z,)=(r /)%™ ie. we divide the moduli and subtract the arguments.
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Example 2:  Express (1 + i)~ (I + 1.73i) in polar coordinates?

We convert Cartesian to polar: For (1 +1) tanf = 1/1 so 6 =n/4. For (1 + 1.731) tanA =1.73/1 so A=n/3
For (1 +i) the value of r* = 1+ 1*sor = \/2._ For (1 + 1.731) the value of ¥ =1° + (1.73)*sor=2.
So we can write (1 +1) = (1 + 1.731) = (V2)e™* + 2¢™ = 0.707¢ ™* ™ = 0.707¢ ™' .

Powers and Roots
Again we always use the polar form. For a real number power it is straightforward: z" = r"e"”.
i.e. we take the modulus to the #n™ power and multiply the argument (or phase) by .

Roots are trickier. We defined ¢ to lie in the region 0 < ¢ < 2n. But this will need to be extended if we

want to get all the roots of a complex number. We define z = re'?**?” where p is an integer.
To find an n” root, we need to take n distinct values ofp: p=0, p=1,p=2, ..., p=n-1.

Then there are 7 distinct roots zV" = p/"l(#+2p)/n.

Example : T remember things better when I do them in easy small steps..so...if z=9 ¢™* what is z"*?
Step 1: write down z in polars with the 2zp bit added on to the argument. z=9 ¢' (™" ™)

Step 2: say how many values of p you’ll need and write out the rooted expression ..... here n=2so I’ll
need 2 values of p;p=0andp=1. z*=+9¢ (W3*"2P)2

Step 3: Work it out for each value of p....z* =3¢ (™ )2 = 3¢ (™) for p=0
Z‘/z =3 ei(rr/3+27r)/2 =3 ei(rr/6+7r) fOI'p =1
There are your answers but remember that e = (cosg+ising) so e™ =(cosm+isinz)=—1I.

It’s therefore better to write z”* = 3 ¢ (™ "™ =3 ¢'76 (™) = -3 ¢' ™6 forp=1, and3 ¢ ™ for p=0

in/2

Example 3: 1fz=27 ¢™* what is 72”9

Step 1: write down z in polars with the 2zp bit added on to the argument. z =27 ¢'(™**2™)

Step 2: say how many values of p you’ll need and write out the rooted expression ..... heren=3so I'll

need 3 values of p; p=0,p=1,andp=2. 7" =327 ¢! (W22 )3

Step 3: Work it out for each value of p....z* =3 ¢' (™) = 3¢ (") for p=0
2f=3 el (W23 g i m) p
Z‘/z:3ei(n/2+4rr)/3 =3 ei(n/6+4n/3)f0rp:2

So the answers are 3 ¢ (™) and 3 & (M6*2™3) and 3 ! (WO 43)

Exponentials and Trigonometric functions
Remember ™ =coskx+isinkx ; e ™ = cos kx —isin kx

Rearranging gives cos kx = %(e”“ +e ™), sin kx = %(e’k" —e™)
i

This is a key observation...remember this.

Differentiation of a Complex Exponential

d : .. . d e . i
We know d—ekx = ke™ . Since i is just a constant, we similarly have d—e’kx = ike'™
X X
Note that is much nicer to differentiate exponentials than sines and cosines because we get exactly

the same function as we started with, just multiplied by a constant.
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