PHY226
Lecture 18: Spherical Polar Coordinates, continued

3. V? in Spherical Polars: Spherical Solutions

2
As given on the data sheet, széi[rzij+ 21_ i(siné’ij+ - _12 82
reor or) r°sinf 06 00) r-sin" 0 0¢

We’ll look first at problems in which the solutions are known to be ‘spherically symmetric’. That is, the
solutions depend on r, but have no angular dependence. They are functions of r but not of & or ¢.

For example if F = F(r) then V2F(r) = in(rz el F(r))
r<dr dr

(a) The Laplace Equation V2V(r) = 0.
Exercise Find spherically symmetric solutions of Laplace’s Equation V2V(r) = 0.

We have VZV(r)=%i(r2—V(r)j=0.
redr dr

In this case we can actually find V(r) directly by rearranging and integrating, in steps.
. . . 2 . d 2 d
Multiplying both sides by r° gives ar r d—V(r) =0.
r r

Integrating both sides gives r’ diV (r)= A where A is a constant. This rearranges to diV (n= Az
r r r

Integrate both sides again and we get the general solution:  V(r)= _A +B.
r
Application
In electrostatics we want a potential which vanishes at oo, so set B = 0, then V(r) = _A .
r
This is the standard Coulomb potential from a point charge at the origin: V(r) = Q , with A=— Q .
el 4re,

We have demonstrated not only that the Coulomb potential satisfies Laplace’s equation but that this is the
only spherically symmetric solution.

(b) The Wave Equation
.. 2 1 0°Y
In 3D the wave equationis V'V =— et
c
Let’s only look for spherically symmetric solutions W(r,t), so the equation can be written
2
VAW (r.1) :%2 2 ovY(r,t) :%8 ‘P(zr,t)
r-or or C ot

As in lecture 13 we look for solutions of the form W(r,t) = R(r)T (1), substitute this back in, and then
separate the variables.

Li[rzT(t)dR(r)J:LR(r)dzT(t) . 1 d (rz dR(r)j 1 dT@)

r’ dr dr c’ dt? SIVes R(r)r? dr dr :czT(t) dt?
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Each side of the equation must equal a constant, and we want oscillating solutions so we choose a
negative constant. In order to help the maths let’s set the constant as — (a)/ C)2 :

1 i[rzdR(r)j_ 1 dZT(t)__(sz
R(r)r? dr dr ) cT@) dt> ¢

. . TR (o) iy ot
The equation for T(t) is easy to solve. prE =—CTH)|—| =—0T(t) giving T({t)~e".
C

2

j:-(%j R =—kR(r) () where k>*=2_.

Now we need to solve

r’ dr dr C

u(r)

Equations like this occur frequently. There is a standard trick which is to define R(r)=——, solve for
r

u(r) and thus find R(r).

1d [rz dR(")

d_R — lm_ u(r)i

Start by differentiating R(r) with respect to r using the product rule. q 5
r r r r

Multiply both sides by r* gives  r? ((jj_R —r dl;(r)
r r

—u(r)

2 2
Now differentiate, again using the product rule. i(rz d—Rj =r d ugr) + du(r) _ du(r) =r d U(ZI’)
r dr dr dr dr dr

Therefore

rodr?

Li(rz dR(r)j_ldzu(r)
r dr dr '

1du(r) _ 2 U0

So equation (*) becomes:
dr r

2
The factors of r cancel, giving % =—k*u(r).
r

Thus we have solutions of the form:

) ) ikr —ikr ikr —ikr )
U(r) = Ae +Be ™ R(r=", Be W(r,t) = RIOT (1) _(Ae” +Be™) +rBe g
r r

Aeikrei(ut Aei(kr+wt)
r

For waves moving out from the origin W(r,t) =

Be ik iot Bei(kr-at)
For waves moving in towards the origin ‘Y(r,t) = =
r

r

These are spherical waves moving in and out from the origin.
Note the factor of 1/r. Intensity is related to amplitude squared. Our solution gives [¥(r, t)]* = A%/ r°,
This is the well known inverse square law.

Many other spherical equations and problems (e.g. heat flow in a sphere) can be solved in a similar way.
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