
  PHY226 

Phil Lightfoot     2008/9 Lecture 15&16 - Page 1 of 5 

Lectures 15&16: The Diffusion Equation  
References: Course Pack p.64-69, 102-107. 

 
In classical physics, almost all time dependent phenomena may be described by the wave equation or the 
diffusion equation. At the micro and nanometer scale, diffusion is often the dominant phenomenon.  

The 1D diffusion equation has the form   
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F is the quantity that diffuses. It is usually a concentration, for example the concentration of a chemical 
diffusing through a region, the concentration of particles in a liquid, the concentration of defects in a 
solid, concentration of spin densities, etc.  
D is the diffusion constant. D has dimensions [length]2/[time], i.e. units m2s-1. 
 

Heat conduction also obeys this situation. F is then temperature, T. And many books write 2 KD h
Cρ

= =  

where h2 is the thermal diffusivity of the material, which depends on K the thermal conductivity, ρ the 
density and C the specific heat of the material. (For metal, typically h2 ~ 1×10-4 m2s-1.)  
 

So we have the heat flow equation    
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We will study heat flow because it is a concept familiar from daily life but the same mathematics can be 
applied to many other diffusion situations.  
 
Thermal Relaxation of a rod with ends held at 0°C 
Consider a perfectly insulated rod of length L. Both ends are held at temperature 0ºC at all times.  
At time t = 0, the temperature distribution along the rod has a given function  T(x, 0)= f(x). 
 

Step 1  Our differential equation is   
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Look for solutions of the form  )()(),( txXtxT θ= . 

Substituting this into the PDE gives  
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To be true at all x, t, both sides of the above equation must be equal to a constant. 
 
Step 2  Since we are told in the boundary conditions that both ends of the rod are held at 0°C at all times 
we choose a negative constant, –k2, to give LHO type solutions, and rearrange to get two ODEs:  
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We have Τ(0, t) = Τ(L, t) = 0,   so  X(0) = X(L) = 0,   so (similar to previous problems) A = 0,  B = nπ/L. 

So we have special solutions  n
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Step 3  The general solution therefore is  ∑∑
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Step 4  At time t = 0, the temperature distribution is T(x, 0)= f(x), so  )(sin)0,( xf
L
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Thus the coefficients Bn are the coefficients of the half-range Fourier sine series of the function  f(x). 
 
Let’s say that the temperature distribution along the rod 
at t = 0 is triangular. 
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i.e. temperature midway in °C is equal to half distance in m. 
 

Half-range sine series expression:      ∑
∞

=

=
1

sin)(
n

n d
xnbxf π ,      where       ∫=

d

n dx
d

xnxf
d

b
0

sin)(2 π . 

 
Here d = L, 
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Half-range sine series is written: ∑
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Step 5  At time t = 0, the temperature distribution is T(x, 0)= f(x), so  )(sin)0,(
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Step 6  The full solution for the rod is therefore: nn
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Now we have all the boundary conditions, we can stick in appropriate values of h and find how the 
temperature profile drops over time. It can be shown that T(x,t) with increasing time looks like this: 
 

 
Notice how the fundamental frequency lasts the longest. 
 
Thermal relaxation of an isolated body 
In the last example the ends of rod were immersed in a massive reservoir at 0°C so that heat was able to 
continually flow out of the rod. Now imagine that the ends are insulated just like the rest of the rod. 
Imagine we start at time = 0 with the same triangular temperature distribution as before. With time, the 
temperature distribution will become uniform. The temperature of the body will then be at some non zero 
temperature.   

The rate of heat flow is known to be proportional to the temperature gradient  
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The body being isolated means there is no heat flow out of the ends so at  x = 0 and x = L,   
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and     kLBkkLAk cossin0 +−=       and so    kLAk sin0 −=   and therefore    
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Putting this back into expression for X(x)  we find  
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We are therefore left with the cosine rather than the sine terms in the expression and so we must solve the 
Half range COSINE series for the temperature function f(x).  
 

Half-range cosine series:   ∑
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This can be shown to give coefficients:  
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Comparison with the general solution  at time = 0  i.e.   ∑∑ ==
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the rod. 
 
Concluding Summary 

1. Sinusoidal functions of x are solutions of the diffusion equation. Hence Fourier methods are again 
useful. (In fact Fourier actually invented them to solve heat flow problems.) 

2. The temperature distribution decays exponentially with time.  
3. The time constant of the decay is proportional to k -2, i.e. to λ2 and therefore also L2.  So the 

longest wavelengths (such as the fundamental) last longest. 
4. Hence if we write an initial temperature distribution as a Fourier series, normally the first term is 

the most important in determining the behaviour at later times. 
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• Importance of  τ ∝ λ2 

To see points 3&4 more clearly, we can rewrite ∑∑ −==
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After a time t = τ, for example, the nth term has decayed by a factor  exp(-n2). Looking at values for this 
for n = 1, 2, 3, … below, we can see that the higher modes decay very fast indeed!  
 

1e−  0.37 
4e−  0.02 

9e−  1.2×10-4 

16e−  1.1×10-7 

25e− 1.4×10-11 
36e− 2.3 ×10-16

49e−  5.3×10-22 

 

To know exactly how the temperature profile changes with time then we need all the terms. But usually a 
very good approximation can be obtained by considering just the first term.  
 
• Importance of  τ ∝ L2 

We are used to thinking of time scaling linearly with distance.  For example, if it takes us 20 mins to walk 
a mile it takes 40 mins to walk 2 miles etc.  But ‘diffusion time’ scales with the square of the length.  
Values of h2 vary between ~1×10-4m2s-1 for a metal and ~1×10-7m2s-1 for cork.   

So using 
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τ  from previous page in 1 second, heat travels a distance of very approximately 

hL π≈ , which is ~ 3 cm for a metal,  ~ 1 mm for cork. 
 
On an everyday scale.  If food is cut up smaller it cooks faster!  (Cookery books tell you the cooking time 
scales as the weight (= length3), but actually it scales as the square of the thinnest dimension!) 

On the large scale.  Why don’t we heat up because of the earth’s core? The heat must travel through 
about 30 km of sand and gravel. Taking the diffusion constant for this material to be  h2 ~ 1×10-6 m2s-1,  
we have  τ ~ L2/π2h2 ~ 1014 seconds ~ 106 years. 

On the small scale. Chemical diffusion constants for ions in water, D, are of the order of  D ~ 10-9m2s-1 
where 2hD = . Our bodies function because ions can diffuse in and out of our muscle cells, acting as 
switches. The time taken for ions to diffuse across a cell of width L= 10-6m is τ ~ L2/π2 D ~ 10−4 seconds, 
which is suitably quick.  Could humans be scaled up so our cells were 1 cm across and still function?  No! 
because the time would then be τ ~ L2/π2D ~ 104 s which is too slow! 
  


