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Lecture 14: The Schrödinger & 2D Laplace Equations 
 

The procedure used in the previous lecture to solve the wave equation can be applied to other PDEs. In 
this lecture we demonstrate its application to the Schrödinger equation and 2D Laplace equation. 
 

The Schrödinger Equation  
 

Consider the time dependent Schrödinger equation in 1 dimensional space: 
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In a region of zero potential, V(x,t) = 0, this simplifies to: 
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Let us solve this subject to boundary conditions Ψ(0, t) = Ψ(L, t) = 0  (as for the infinite potential well). 
 
Step 1: Separation of the Variables 
Our boundary conditions are true at special values of x, for all values of time, so we look for solutions of 
the form  Ψ(x, t) = X(x)T(t). Substitute this into the Schrödinger equation:  
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Multiply both sides by  1/X(x)T(t):           
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Now we have separated the variables. The above equation can only be true for all x, t if both sides are 
equal to a constant. It is conventional (for good reasons – see below and PHY202!) to call the constant E. 
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Step 2: Satisfying the Boundary Conditions 
 
For X(x) 
Our boundary conditions are  Ψ(0, t) = Ψ(L, t) = 0, which means  X(0) = X(L) = 0.  
So clearly we need E > 0, so that equation (i) has the form of the harmonic oscillator equation.  

It is simpler to rewrite (i) as Xk
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Then the general solution for X(x) is kxBkxAxX sincos)( += . 

Apply the boundary conditions:  X(0) = 0  gives   A = 0;  we must have B ≠ 0  so  X(L) = 0 requires  

sin kL=0,    i.e.   kn = nπ /L,   so   
L
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πsin)( =   for  n = 1, 2, 3, …. 

For T(t) 
Equation (ii) has solution  hiEteTT −= 0   (See lecture 3 first order ODEs). 

So we have special solutions:    htiE
nnnn

ne
L

xnBtTxXtx −==Ψ
πsin)()(),(    where   

2

22222

22 mL
n

m
kE n

n
πhh

== . 

(These are the energy eigenstates of the system.) 
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Step 3: Constructing the General Solution 

Hence the general solution is  ∑∑
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(In general therefore a particle will be in a superposition of eigenstates.) 
 
Step 4: Solution of Complete Problem using Fourier Series 
If we know the state of the system at t = 0, we can find the state at any later time. 
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The Laplace Equation in 2D 
 
In the next lecture we will start looking at the diffusion equation, 
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governed by this equation is heat flow. That is, in many situations, T(x, y, z, t) satisfies 
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In ‘steady state’ problems where nothing is changing with time, the equation simplifies to 02 =∇ T , 
which is the Laplace equation. (This can be applied to electrostatics if the temperatures were replaced by 
potentials.) We will look at this equation in 2D by considering the following exercises  
 
Exercise 1   
Consider a rectangular metal plate 10 cm wide and very long. The two long sides and the 
far end are held at 0ºC and the base at 100ºC. Find the steady state temperature 
distribution inside the plate. NB. You will need to use the superposition principle at the end 
to satisfy the boundary conditions!! 
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Step 1: Separation of the variables – look for solutions of the form T(x, y) = X(x)Y(y). 

So substituting gives 0)()()()( 2

2

2

2

=
∂

∂
+

∂
∂

y
yYxX

x
xXyY    and dividing through by X(x)Y(y) we get : 

 

                  0)(
)(

1)(
)(

1
2

2

2

2

=
∂

∂
+

∂
∂

y
yY

yYx
xX

xX
    and so  2

2

2

2 )(
)(

1)(
)(

1
y

yY
yYx

xX
xX ∂

∂
−=

∂
∂  

 
Step 2: Satisfy the boundary conditions. Considering the BCs, choose an appropriate constant of 
separation. Find the general forms of X(x) and Y(y). Apply relevant BCs. Find the special solutions. 

Now we set both sides equal to a constant. When choosing the constant we must think carefully about the 
boundary conditions. We know that X(0) = X(L) = 0 and we know that in the Y direction up the page we 
expect an exponential drop or something similar from T(x,0) = 100 to T(x,∞) = 0. Think back again to the 
LHO solution and the falling pencil solution in lecture 3 for 2nd order ODEs. It is clear now that for a 
solution in x such that X(x) = 0 more than once, the constant must be negative (like a LHO). For 
convenience we choose the constant as -k2 so…. 
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Now we must again think of the boundary conditions and attempt to deduce A,B,C, and D. We know that 
X(0) = X(L) = 0  and if this is true then A = 0. Also since X(L) = 0 = B sin kx  then  πnkL =    so we can 

say  
L

xnBxX πsin)( = .   Now looking at  kyky DeCeyY += −)(   and since we know that T(x,y) → 0  as 

y→∞  then we can state that D = 0 and kyCeyY −=)( .   
 

So special solution is 
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Step 3: Construct the general solution. 

So the general solution can be written as     ∑
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This already satisfies the boundary conditions for x,  namely that T(0,y) = T(L,y) = 0.  All that remains is 
to calculate the required values of P such that the T(x,0) =100  is satisfied. 
 
Step 4: Use the remaining information to solve the complete problem. (Fourier series is useful.) 

Since the temperature at y = 0 is 100    then    ∑ ∑
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Here is a lateral jump that isn’t obvious!!!! Remember from lecture 5-8 that the Half-range sine series is a 
sum of sine terms that can represent things like plucked guitar strings. Look how similar this is to the 
expression for T(x,0) if we set L = 10 and f(x)=100.  

  

Half-range sine series:       ∑
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So all we have to do now is calculate the half-range sine series in the usual way. 
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So in order for the boundary conditions for T(x,0) = 100 to be satisfied, 
we must take the following values of Pn in the sum. 

 

Finally we can state the full solution:- 
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