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Lecture 13: The Wave Equation  
Note: The rest of this course is not covered by Jordan & Smith. These notes are complete although you 
may find the Course Pack helpful (see Introduction section of these notes). 
 

Introduction to PDEs 
In many physical situations we encounter quantities which depend on two or more variables, for example 
the displacement of a string varies with space and time: y(x, t). Handing such functions mathematically 
involves partial differentiation and partial differential equations (PDEs).  
 
Revision of Partial Differentiation 

Consider a function y(x, t). Remember that to find 
x
y
∂
∂  (the partial derivative of y with respect to x), we 

differentiate with respect to x treating t as a constant. 
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Partial Differential Equations 
Some of the most commonly occuring PDEs, and their areas of application, are listed below: 
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electromagnetic waves, etc. 
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2 1  Diffusion equation Heat flow, chemical diffusion, etc. 

4 02 =∇ u  Laplace’s equation Electromagnetism, gravitation, 
hydrodynamics, heat flow. 
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−=∇ u  Poisson’s equation As (4) in regions containing mass, 
charge, sources of heat, etc. 

 

Remember from last year that Gauss equation relates the surface integral of the electric field to the charge 

inside the surface. This can also be written as 
0

.
ε
ρ

=∇ E  and since the electric field is related to the 

potential by VE −∇=  then we can write 
0

2

ε
ρ

−=∇ V . This is Poisson’s equation, and in a charge free 

region of space this becomes Laplace’s equation. This can be directly applied to fluid flow or gravitation 
by reassigning terms. The Schrödinger and diffusion equations will be covered in future lectures. 
 
We will start by looking at equations 1-3 in one space dimension, then move on to 3D problems. 
In many cases, solutions of PDEs can be found by separation of the variables. We will learn this method 
by considering waves on strings. In subsequent lectures we will use a similar procedure to solve many 
other PDEs. 

The One-Dimensional Wave Equation 
See Course Pack p.69-74, 95-101. 

Waves on strings are governed by the equation    
2 2
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( , ) 1 ( , )y x t y x t
x c t

∂ ∂
=

∂ ∂
,  where  y(x, t) is the 

displacement of the string at position x and time t.   
 

You will have met this equation briefly in Y1 and learned that  c2 = T/µ   where µ is the mass per unit 
length of the string, T is the tension, and c is the wave velocity. In this course we will not be concerned 
with where the equation came from but only with finding its solutions, i.e. determining the motion of the 
string. 
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Consider the specific case of a string of length L attached at both ends to rigid supports. Then we 
additionally have the boundary conditions   y(0, t) =  y(L, t) = 0. 
 

Note: A PDE can never be solved without knowing the boundary conditions! 
Step 1: Separation of the Variables 
Our boundary conditions are true at special values of x and for all values of time. 
Also since y is a function of both x and t, then the solutions will be of the form   )()(),( tTxXtxy =  where 
the big X and T are functions of x and t respectively. 

Substituting this into the wave equation… 
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So substitution gives       2

2

22

2 )()()()(
dt

tTd
c

xX
dx

xXdtT = . 

Rearrange the equation so all the terms in x are on one side and all the terms in t are on the other: 
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The only way this can be satisfied for all x, t is if both sides are equal to a constant: 
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Now we have ordinary differential equations for X(x) and T(t) – which we can solve.  
 
Consider the equation for X(x). In lecture 3 we looked at two equations of this form: 

1. 
2

2
02 ( ) ( )d x t x t

dt
ω= −  Linear harmonic oscillator 

2. )()( 2
2

2

txtx
dt
d

α=   Unstable equilibrium 

Which case we have depends on whether our constant A is positive or negative. We need to make an 
appropriate choice for N by considering the physical situation, particularly the boundary conditions.  
 
Step 2: Satisfying the Boundary Conditions 
In our case the boundary conditions are y(0, t) =  y(L, t) = 0. This means  X(0) = X(L) = 0, i.e. X is equal to 
zero at two different points.  This is crucial in determining the sign of A. Remember that (1) has 
oscillatory solutions (meaning that it will pass through zero displacement many times), whilst the 
solutions of (2) are exponential growth and decay that only tend to x = 0 once (see lecture 3 and compare 
a pendulum with a pencil falling from the vertical). From this we deduce that N must be negative.  Let’s 
write N =− k2. 
 

So (i) becomes 
2

2
2

( ) ( )d X x k X x
dx

= − .  From lecture 3, this has general solution kxBkxAxX sincos)( += . 

Now we apply the boundary conditions:   
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    X(0) = 0   gives  A = 0.    

    We must take B ≠ 0.  So X(L) = 0  requires sin kL = 0,  i.e.  kL = nπ.   
    So k can only take certain values  kn = nπ /L  where n is an integer (which we can chose to be positive) 

    So we have  
L

xnBxX nn
πsin)( =   for  n = 1, 2, 3, …. 

 

The equations for X(x) and T(t) are equal to the same constant, so equation (ii) becomes  
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Looking at the diagram below 
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Since c is the wave velocity  and λfc =  then we can write  
k

c ω
π

ωλ
==

2
   and  so  cknn =ω  
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Therefore it has solutions of the form  )()( titi
n
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( )nnn tCtT φω += cos)( .     (see lecture 3). 

 

   Hence we have special solutions:     
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We see that each yn represents harmonic motion with a different wavelength (different frequency). In the 
diagram below of course time is constant (as it’s a photo not a movie!!): 
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L

kk π22 12 == ,    L==
2

1
2

λλ ,        ω2 =  2 c
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The Superposition principle 
The wave equation (and all PDEs which we will consider) is a linear equation, meaning that the 
dependent variable and all its derivatives appear to the 1st power. For such equations there is a 
fundamental theorem called the superposition principle, which states that if  y1 and  y2 are solutions of 
the equation then   y = c1 y1 + c2 y2  is also a solution,  for any constants c1, c2. Put more simply this 
means that the net amplitude caused by two or more waves traversing the same space, is the sum of the 
amplitudes which would have been produced by the individual waves separately. Although this principle 
has been mainly used to describe constructive and destructive interference of waves, it was also used last 
year to describe net voltage within a circuit, energy transfer along a bar heated at both ends, and in the 
summation of the effects of charge distribution. 
 

 
Step 3: Constructing the General Solution 
Bearing in mind the superposition principle, the general solution of our equation is the sum of all special 

solutions:  ∑
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This is the most general answer to the problem. For example, if a skipping rope was oscillated at both its 
fundamental frequency and its 2nd harmonic, then the rope would look like the dashed line at some 
specific point in time and generally its displacement could be described by the equation :- 
 

      ⎟
⎠
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NB. The Fourier series is a further example of the superposition principle. 
 
Step 4: Solution of Complete Problem using Fourier Series 
Suppose we have been given further information, namely we have been told that at time t = 0 the guitar 
string from lecture 8 example 5 is released from rest in the configuration shown below: 
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0

=
∂
∂

=tt
y , if we differentiate we find 

0sinsin
1

=⎟
⎠
⎞

⎜
⎝
⎛ +−=

∂
∂ ∑

∞

=n
n

n

L
ctn

L
xn

L
cnB

t
y φπππ

  so for this to be true φn = 0 for all n. 

So the general solution becomes   ∑
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So at time t = 0,   ∑
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=
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n
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If we look back to lecture 8 example 5 we will see that the coefficients Bn are the coefficients of the 
Fourier series for the given initial configuration! We’ve already shown that the configuration drawn 
above at  t = 0 can be expressed as a half-range sine series, 
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Hence, by trusting the superposition principle and therefore treating each harmonic as a separate 
oscillating sinusoidal waveform, we deduce that at later times the configuration of the string will be:- 
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SUMMARY of the procedure used: 

1. We have an equation 
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 with boundary conditions  y(0, t) = y(L, t) = 0. 

We look for a solution of the form  )()(),( tTxXtxy = . 

We find that the variables ‘separate’ N
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2. We use the boundary conditions to deduce that N must be negative, i.e.  N = − k2. 
We use the boundary conditions further to find the allowed values of k and hence find X(x). 
We find the corresponding solution of the equation for Τ(t). 
Hence we can write down the special solutions.  

3. By the principle of superposition, the general solution is a sum over all special solutions. 
4. Given the initial configuration, or similar information, the Fourier series can be used to find the 

particular solution at all times. 
 

In subsequent lectures we will use a similar procedure to solve other PDEs. 

Try a few questions from ‘Phil’s Problems’. 


